Numerical methods for the Einstein equations in null quasi-spherical coordinates

被引:18
|
作者
Bartnik, R [1 ]
Norton, AH [1 ]
机构
[1] Univ Canberra, Sch Math & Stat, Canberra, ACT 2601, Australia
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2000年 / 22卷 / 03期
关键词
black hole; convolution spline; Einstein equations; preconditioned elliptic system; spherical harmonics;
D O I
10.1137/S1064827599356171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe algorithms used in our construction of a fourth-order in time evolution for the full Einstein equations and assess the accuracy of some representative solutions. The scheme employs several novel geometric and numerical techniques, including a geometrically invariant coordinate gauge, which leads to a characteristic-transport formulation of the underlying hyperbolic system, combined with a method of lines evolution; convolution splines for radial interpolation, regridding, differentiation, and noise suppression; representations using spin-weighted spherical harmonics; and a spectral preconditioner for solving a class of first-order elliptic systems on S-2. Initial data for the evolution is unconstrained, subject only to a mild size condition. For sample initial data of intermediate strength (19% of the total mass in gravitational energy), the code is accurate to 1 part in 10(5), until null time z = 55m when the coordinate condition breaks down.
引用
收藏
页码:917 / 950
页数:34
相关论文
共 50 条
  • [31] Current implosion of quasi-spherical wire arrays
    Grabovskii, E. V.
    Gritsuk, A. N.
    Smirnov, V. P.
    Aleksandrov, V. V.
    Oleinik, G. M.
    Frolov, I. N.
    Laukhin, Ya. N.
    Gribov, A. N.
    Samokhin, A. A.
    Sasorov, P. V.
    Mitrofanov, K. N.
    Medovshchikov, S. F.
    JETP LETTERS, 2009, 89 (07) : 315 - 318
  • [32] Microwave Method for Closure of Quasi-spherical Resonator
    Liu, W. J.
    Pitre, L.
    Gao, B.
    Zhang, H. Y.
    Chen, Y. Y.
    Plimmer, M. D.
    Luo, E. C.
    Sparasci, F.
    Song, Y. N.
    Chen, H.
    Pan, C. Z.
    Yu, B.
    Hu, J. Y.
    2018 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM 2018), 2018,
  • [33] QUASI-SPHERICAL MASSES ROTATING IN GENERAL RELATIVITY
    TEYSSANDIER, P
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1970, 12 (03): : 263 - +
  • [34] Quasi-spherical light cones of the Kerr geometry
    Pretorius, F
    Israel, W
    CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (08) : 2289 - 2301
  • [35] VOLUME OF QUASI-SPHERICAL SOLID DENSITY STANDARDS
    MANA, G
    METROLOGIA, 1994, 31 (04) : 289 - 300
  • [36] Quasi-Spherical Gravitational Collapse in Any Dimension
    Ujjal Debnath
    Subenoy Chakraborty
    John D. Barrow
    General Relativity and Gravitation, 2004, 36 : 231 - 243
  • [37] On the global visibility of the singularity in quasi-spherical collapse
    Deshingkar, SS
    Jhingan, S
    Joshi, PS
    GENERAL RELATIVITY AND GRAVITATION, 1998, 30 (10) : 1477 - 1499
  • [38] QUASI-SPHERICAL METRICS AND PRESCRIBED SCALAR CURVATURE
    BARTNIK, R
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1993, 37 (01) : 31 - 71
  • [39] On the Global Visibility of the Singularity in Quasi-Spherical Collapse
    S. S. Deshingkar
    S. Jhingan
    P. S. Joshi
    General Relativity and Gravitation, 1998, 30 : 1477 - 1499
  • [40] THE POTENTIAL BETWEEN PAIRS OF QUASI-SPHERICAL MOLECULES
    LAMBERT, JA
    AUSTRALIAN JOURNAL OF CHEMISTRY, 1959, 12 (02) : 109 - 113