Numerical methods for the Einstein equations in null quasi-spherical coordinates

被引:18
|
作者
Bartnik, R [1 ]
Norton, AH [1 ]
机构
[1] Univ Canberra, Sch Math & Stat, Canberra, ACT 2601, Australia
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2000年 / 22卷 / 03期
关键词
black hole; convolution spline; Einstein equations; preconditioned elliptic system; spherical harmonics;
D O I
10.1137/S1064827599356171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe algorithms used in our construction of a fourth-order in time evolution for the full Einstein equations and assess the accuracy of some representative solutions. The scheme employs several novel geometric and numerical techniques, including a geometrically invariant coordinate gauge, which leads to a characteristic-transport formulation of the underlying hyperbolic system, combined with a method of lines evolution; convolution splines for radial interpolation, regridding, differentiation, and noise suppression; representations using spin-weighted spherical harmonics; and a spectral preconditioner for solving a class of first-order elliptic systems on S-2. Initial data for the evolution is unconstrained, subject only to a mild size condition. For sample initial data of intermediate strength (19% of the total mass in gravitational energy), the code is accurate to 1 part in 10(5), until null time z = 55m when the coordinate condition breaks down.
引用
收藏
页码:917 / 950
页数:34
相关论文
共 50 条
  • [21] A Quasi-Spherical Air Pressure Probe
    Golovkin M.A.
    Efremov A.A.
    Sysoev V.V.
    Russian Aeronautics, 2018, 61 (2): : 265 - 270
  • [22] INTERMOLECULAR FORCES IN QUASI-SPHERICAL MOLECULES
    MCCOUBREY, JC
    SINGH, NM
    TRANSACTIONS OF THE FARADAY SOCIETY, 1957, 53 (07): : 877 - 883
  • [23] Time-dependent quasi-spherical accretion
    Ogilvie, GI
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 306 (01) : L9 - L13
  • [24] Role of pressure in quasi-spherical gravitational collapse
    Chakraborty, S
    Chakraborty, S
    Debnath, U
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2005, 14 (10): : 1707 - 1723
  • [25] Quasi-spherical gravitational collapse in any dimension
    Debnath, U
    Chakraborty, S
    Barrow, JD
    GENERAL RELATIVITY AND GRAVITATION, 2004, 36 (02) : 231 - 243
  • [26] On the surface tension of fluctuating quasi-spherical vesicles
    C. Barbetta
    A. Imparato
    J. -B. Fournier
    The European Physical Journal E, 2010, 31 : 333 - 342
  • [27] Designing quasi-spherical resonators for acoustic thermometry
    Mehl, JB
    Moldover, MR
    Pitre, L
    METROLOGIA, 2004, 41 (04) : 295 - 304
  • [28] A model for quasi-spherical magnetized accretion flow
    Shadmehri, M
    ASTRONOMY & ASTROPHYSICS, 2004, 424 (02) : 379 - 387
  • [29] VISCOSITY OF QUASI-SPHERICAL MOLECULES IN VAPOUR PHASE
    PENA, MD
    ESTEBAN, F
    ANALES DE LA REAL SOCIEDAD ESPANOLA DE FISICA Y QUIMICA SERIA A-FISICA, 1966, A 62 (11-1): : 347 - &
  • [30] Current implosion of quasi-spherical wire arrays
    E. V. Grabovskii
    A. N. Gritsuk
    V. P. Smirnov
    V. V. Aleksandrov
    G. M. Oleinik
    I. N. Frolov
    Ya. N. Laukhin
    A. N. Gribov
    A. A. Samokhin
    P. V. Sasorov
    K. N. Mitrofanov
    S. F. Medovshchikov
    JETP Letters, 2009, 89 : 315 - 318