Quasi-Spherical and Multi-Quasi-Spherical Polynomial Quaternionic Equations: Introduction of the Notions and Some Examples

被引:0
|
作者
Dmytro Mierzejewski
机构
来源
关键词
11R52; 30G35; 12K99; Quaternion; equation; polynomial; section by a hyperplane; factorization; system of equations;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce notions of quasi-spherical and multi-quasi-spherical polynomial quaternionic equations defined in terms of the shape of the set of the solutions of the equation. We establish that every quaternionic equation of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum\limits_{\ell = 1}^m {a^{(\ell)}} x^2 b^{(\ell)} + \sum\limits_{p = 1}^q {c^{(p)}} xd^{(p)} + h = 0}$$\end{document}is quasi-spherical. We get some sufficient conditions under which a quadratic quaternionic polynomial can be represented as a product of linear quaternionic polynomials (and thus the corresponding equation is multi-quasi-spherical).
引用
收藏
页码:407 / 416
页数:9
相关论文
共 50 条
  • [1] Quasi-Spherical and Multi-Quasi-Spherical Polynomial Quaternionic Equations: Introduction of the Notions and Some Examples
    Mierzejewski, Dmytro
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2011, 21 (02) : 407 - 416
  • [2] Are Nanoparticles Spherical or Quasi-Spherical?
    Sokolov, Stanislav V.
    Batchelor-McAuley, Christopher
    Tschulik, Kristina
    Fletcher, Stephen
    Compton, Richard G.
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (30) : 10741 - 10746
  • [3] Quasi-spherical superclusters
    Heinamaki, P.
    Teerikorpi, P.
    Douspis, M.
    Nurmi, P.
    Einasto, M.
    Gramann, M.
    Nevalainen, J.
    Saar, E.
    [J]. ASTRONOMY & ASTROPHYSICS, 2022, 668
  • [4] A dynamical symmetry of the quasi-spherical (or spherical) collapse
    Debnath, U
    Chakraborty, S
    Dadhich, N
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2005, 14 (10): : 1761 - 1767
  • [5] Fermion quasi-spherical harmonics
    Hunter, G
    Ecimovic, P
    Schlifer, I
    Walker, IM
    Beamish, D
    Donev, S
    Kowalski, M
    Arslan, S
    Heck, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (05): : 795 - 803
  • [6] QUASI-SPHERICAL GRAVITATIONAL COLLAPSE
    SZEKERES, P
    [J]. PHYSICAL REVIEW D, 1975, 12 (10): : 2941 - 2948
  • [7] Quasi-Spherical Metrics and Applications
    Yuguang Shi
    [J]. Communications in Mathematical Physics, 2004, 250 : 65 - 80
  • [8] Quasi-spherical metrics and applications
    Shi, YG
    Tam, LF
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 250 (01) : 65 - 80
  • [9] Numerical methods for the Einstein equations in null quasi-spherical coordinates
    Bartnik, R
    Norton, AH
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (03): : 917 - 950
  • [10] Quasi-spherical collapse with cosmological constant
    Debnath, Ujjal
    Nath, Soma
    Chakraborty, Subenoy
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 369 (04) : 1961 - 1964