Quasi-Spherical Metrics and Applications

被引:0
|
作者
Yuguang Shi
机构
[1] School of Mathematics Science,Key Laboratory of Pure and Applied Mathematics
[2] Peking University,Department of Mathematics
[3] The Chinese University of Hong Kong,undefined
来源
关键词
Boundary Condition; Manifold; Black Hole; Euclidean Space; Finite Group;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, using the idea of Bartnik [B2] on quasi-spherical metrics we continue our study on the boundary behaviors of compact manifolds with nonnegative scalar curvature and nonempty boundary. Unlike the previous work [ST] of the authors and the work of Liu-Yau [LY], we only assume each boundary component has nonnegative curvature which is not identically zero. We also study the case that the boundary is embedded in the quotient of the infinity of the Euclidean space over a finite group. The regularity of the black hole boundary condition of quasi-spherical metrics is also discussed.
引用
收藏
页码:65 / 80
页数:15
相关论文
共 50 条
  • [1] Quasi-spherical metrics and applications
    Shi, YG
    Tam, LF
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 250 (01) : 65 - 80
  • [2] QUASI-SPHERICAL METRICS AND PRESCRIBED SCALAR CURVATURE
    BARTNIK, R
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 1993, 37 (01) : 31 - 71
  • [3] Are Nanoparticles Spherical or Quasi-Spherical?
    Sokolov, Stanislav V.
    Batchelor-McAuley, Christopher
    Tschulik, Kristina
    Fletcher, Stephen
    Compton, Richard G.
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (30) : 10741 - 10746
  • [4] Quasi-spherical superclusters
    Heinamaki, P.
    Teerikorpi, P.
    Douspis, M.
    Nurmi, P.
    Einasto, M.
    Gramann, M.
    Nevalainen, J.
    Saar, E.
    [J]. ASTRONOMY & ASTROPHYSICS, 2022, 668
  • [5] Fermion quasi-spherical harmonics
    Hunter, G
    Ecimovic, P
    Schlifer, I
    Walker, IM
    Beamish, D
    Donev, S
    Kowalski, M
    Arslan, S
    Heck, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (05): : 795 - 803
  • [6] QUASI-SPHERICAL GRAVITATIONAL COLLAPSE
    SZEKERES, P
    [J]. PHYSICAL REVIEW D, 1975, 12 (10): : 2941 - 2948
  • [7] A dynamical symmetry of the quasi-spherical (or spherical) collapse
    Debnath, U
    Chakraborty, S
    Dadhich, N
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2005, 14 (10): : 1761 - 1767
  • [8] Quasi-spherical collapse with cosmological constant
    Debnath, Ujjal
    Nath, Soma
    Chakraborty, Subenoy
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 369 (04) : 1961 - 1964
  • [9] Quasi-Spherical Ice in Convective Clouds
    Jaervinen, Emma
    Schnaiter, Martin
    Mioche, Guillaume
    Jourdan, Olivier
    Shcherbakov, Valery N.
    Costa, Anja
    Afchine, Armin
    Kraemer, Martina
    Heidelberg, Fabian
    Jurkat, Tina
    Voigt, Christiane
    Schlager, Hans
    Nichman, Leonid
    Gallagher, Martin
    Hirst, Edwin
    Schmitt, Carl
    Bansemer, Aaron
    Heymsfield, Andy
    Lawson, Paul
    Tricoli, Ugo
    Pfeilsticker, Klaus
    Vochezer, Paul
    Moethler, Ottmar
    Leisner, Thomas
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2016, 73 (10) : 3885 - 3910
  • [10] Quasi-spherical collapse of matter in ΛCDM
    Rampf, Cornelius
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (04) : 5223 - 5235