We develop three Bayesian predictive probability functions based on data in the form of a double sample. One Bayesian predictive probability function is for predicting the true unobservable count of interest in a future sample for a Poisson model with data subject to misclassification and two Bayesian predictive probability functions for predicting the number of misclassified counts in a current observable fallible count for an event of interest. We formulate a Gibbs sampler to calculate prediction intervals for these three unobservable random variables and apply our new predictive models to calculate prediction intervals for a real-data example.
机构:
Ottawa Hosp Res Inst, Regenerat Med Program, Ottawa, ON, Canada
Univ Ottawa, Dept Biochem Microbiol & Immunol, Ottawa, ON, CanadaOttawa Hosp Res Inst, Regenerat Med Program, Ottawa, ON, Canada
Sanchez-Taltavull, Daniel
Ramachandran, Parameswaran
论文数: 0引用数: 0
h-index: 0
机构:
Ottawa Hosp Res Inst, Regenerat Med Program, Ottawa, ON, Canada
Univ Ottawa, Dept Biochem Microbiol & Immunol, Ottawa, ON, CanadaOttawa Hosp Res Inst, Regenerat Med Program, Ottawa, ON, Canada
Ramachandran, Parameswaran
Lau, Nelson
论文数: 0引用数: 0
h-index: 0
机构:
Ottawa Hosp Res Inst, Regenerat Med Program, Ottawa, ON, CanadaOttawa Hosp Res Inst, Regenerat Med Program, Ottawa, ON, Canada
Lau, Nelson
Perkins, Theodore J.
论文数: 0引用数: 0
h-index: 0
机构:
Ottawa Hosp Res Inst, Regenerat Med Program, Ottawa, ON, Canada
Univ Ottawa, Dept Biochem Microbiol & Immunol, Ottawa, ON, CanadaOttawa Hosp Res Inst, Regenerat Med Program, Ottawa, ON, Canada
机构:
Kyoto Univ, Grad Sch Econ, Yoshida Honmachi,Sakyo Ku, Kyoto 6068501, JapanKyoto Univ, Grad Sch Econ, Yoshida Honmachi,Sakyo Ku, Kyoto 6068501, Japan