Bayesian predictive probability functions for count data that are subject to misclassification

被引:7
|
作者
Stamey, JA [1 ]
Young, DM
Bratcher, TL
机构
[1] Stephen F Austin State Univ, Dept Math & Stat, Nacogdoches, TX 75962 USA
[2] Baylor Univ, Dept Stat Sci, Waco, TX 76798 USA
关键词
Poisson distribution; binomial distribution; false-positive observations; false-negative observations;
D O I
10.1002/bimj.200410059
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop three Bayesian predictive probability functions based on data in the form of a double sample. One Bayesian predictive probability function is for predicting the true unobservable count of interest in a future sample for a Poisson model with data subject to misclassification and two Bayesian predictive probability functions for predicting the number of misclassified counts in a current observable fallible count for an event of interest. We formulate a Gibbs sampler to calculate prediction intervals for these three unobservable random variables and apply our new predictive models to calculate prediction intervals for a real-data example.
引用
收藏
页码:572 / 578
页数:7
相关论文
共 50 条
  • [41] Bayesian Forecasting for Time Series of Count Data
    Nariswari, Rinda
    Pudjihastuti, Herena
    4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE (ICCSCI 2019) : ENABLING COLLABORATION TO ESCALATE IMPACT OF RESEARCH RESULTS FOR SOCIETY, 2019, 157 : 427 - 435
  • [42] Bayesian analysis of pair-matched case-control studies subject to outcome misclassification
    Hogg, Tanja
    Petkau, John
    Zhao, Yinshan
    Gustafson, Paul
    Wijnands, Jose M. A.
    Tremlett, Helen
    STATISTICS IN MEDICINE, 2017, 36 (26) : 4196 - 4213
  • [43] Employing Bayesian Networks and Conditional Probability Functions for Determining Dependences in Road Traffic Accidents Data
    Vanis, Miroslav
    Urbaniec, Krzysztof
    2017 SMART CITY SYMPOSIUM PRAGUE (SCSP), 2017,
  • [44] Bayesian Estimation with Uncertain Parameters of Probability Density Functions
    Klumpp, Vesa
    Hanebeck, Uwe D.
    FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 1759 - 1766
  • [45] CONFIDENCE-BOUNDS FOR MISCLASSIFICATION PROBABILITIES BASED ON DATA SUBJECT TO MEASUREMENT ERROR
    MEE, RW
    OWEN, DB
    SHYU, JC
    BIOMETRICS, 1985, 41 (02) : 578 - 578
  • [46] Modeling repeated count data subject to informative dropout
    Albert, PS
    Follmann, DA
    BIOMETRICS, 2000, 56 (03) : 667 - 677
  • [47] CONFIDENCE-BOUNDS FOR MISCLASSIFICATION PROBABILITIES BASED ON DATA SUBJECT TO MEASUREMENT ERROR
    MEE, RW
    OWEN, DB
    SHYU, JC
    JOURNAL OF QUALITY TECHNOLOGY, 1986, 18 (01) : 29 - 40
  • [48] TESTING INDEPENDENCE IN 2-WAY CONTINGENCY TABLES WITH DATA SUBJECT TO MISCLASSIFICATION
    ASSAKUL, K
    PROCTOR, CH
    PSYCHOMETRIKA, 1967, 32 (01) : 67 - 67
  • [49] Minimax predictive density for sparse count data
    Yano, Keisuke
    Kaneko, Ryoya
    Komaki, Fumiyasu
    BERNOULLI, 2021, 27 (02) : 1212 - 1238