Minimax predictive density for sparse count data

被引:2
|
作者
Yano, Keisuke [1 ]
Kaneko, Ryoya [2 ]
Komaki, Fumiyasu [3 ,4 ]
机构
[1] Inst Stat Math, 10-3 Midori Cho, Tachikawa, Tokyo 1908562, Japan
[2] Tokyo Marine Holdings Inc, Chiyoda Ku, 1-2-1 Marunouchi, Tokyo 1008050, Japan
[3] Univ Tokyo, Dept Math Informat, Grad Sch Informat Sci & Technol, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[4] RIKEN, Ctr Brain Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
关键词
Adaptation; high dimension; Kullback-Leibler divergence; missing at random; Poisson model; zero inflation; ZERO-INFLATED POISSON; BAYESIAN PREDICTION; REGRESSION; PRIORS; SPIKE;
D O I
10.3150/20-BEJ1271
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper discusses predictive densities under the Kullback-Leibler loss for high-dimensional Poisson sequence models under sparsity constraints. Sparsity in count data implies zero-inflation. We present a class of Bayes predictive densities that attain asymptotic minimaxity in sparse Poisson sequence models. We also show that our class with an estimator of unknown sparsity level plugged-in is adaptive in the asymptotically minimax sense. For application, we extend our results to settings with quasi-sparsity and with missing-completely-at-random observations. The simulation studies as well as application to real data illustrate the efficiency of the proposed Bayes predictive densities.
引用
收藏
页码:1212 / 1238
页数:27
相关论文
共 50 条
  • [1] ON MINIMAX OPTIMALITY OF SPARSE BAYES PREDICTIVE DENSITY ESTIMATES
    Mukherjee, Gourab
    Johnstone, Iain M.
    [J]. ANNALS OF STATISTICS, 2022, 50 (01): : 81 - 106
  • [2] EXACT MINIMAX ESTIMATION OF THE PREDICTIVE DENSITY IN SPARSE GAUSSIAN MODELS
    Mukherjee, Gourab
    Johnstone, Iain M.
    [J]. ANNALS OF STATISTICS, 2015, 43 (03): : 937 - 961
  • [3] On discrete priors and sparse minimax optimal predictive densities
    Gangopadhyay, Ujan
    Mukherjee, Gourab
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 1636 - 1660
  • [4] Exact minimax strategies for predictive density estimation, data compression, and model selection
    Liang, F
    Barron, A
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (11) : 2708 - 2726
  • [5] Exact minimax strategies for predictive density estimation, data compression and model selection
    Liang, F
    Barron, AR
    [J]. ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 149 - 149
  • [6] Exact minimax predictive density estimation and MDL
    Liang, F
    Barron, A
    [J]. ADVANCES IN MINIMUM DESCRIPTION LENGTH THEORY AND APPLICATIONS, 2005, : 177 - 193
  • [7] Sparse Bayesian modelling of underreported count data
    Dvorzak, Michaela
    Wagner, Helga
    [J]. STATISTICAL MODELLING, 2016, 16 (01) : 24 - 46
  • [8] Predictive Model Assessment for Count Data
    Czado, Claudia
    Gneiting, Tilmann
    Held, Leonhard
    [J]. BIOMETRICS, 2009, 65 (04) : 1254 - 1261
  • [9] Minimax kernels for density estimation with biased data
    Wu, CO
    Mao, AQ
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1996, 48 (03) : 451 - 467
  • [10] Predictive Learning with Sparse Heterogeneous Data
    Cherkassky, Vladimir
    Cai, Feng
    Liang, Lichen
    [J]. IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 3155 - +