Exact minimax strategies for predictive density estimation, data compression and model selection

被引:0
|
作者
Liang, F [1 ]
Barron, AR [1 ]
机构
[1] Duke Univ, Inst Stat & Decis Sci, Durham, NC 27708 USA
关键词
D O I
10.1109/ISIT.2002.1023421
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Bayes procedure with uniform prior on location (and log-scale) parameters is shown to be exact minimax optimal for location and scale families in problems of universal data compression, predictive density estimation and model selection.
引用
收藏
页码:149 / 149
页数:1
相关论文
共 50 条
  • [1] Exact minimax strategies for predictive density estimation, data compression, and model selection
    Liang, F
    Barron, A
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (11) : 2708 - 2726
  • [2] Exact minimax predictive density estimation and MDL
    Liang, F
    Barron, A
    [J]. ADVANCES IN MINIMUM DESCRIPTION LENGTH THEORY AND APPLICATIONS, 2005, : 177 - 193
  • [3] EXACT MINIMAX ESTIMATION OF THE PREDICTIVE DENSITY IN SPARSE GAUSSIAN MODELS
    Mukherjee, Gourab
    Johnstone, Iain M.
    [J]. ANNALS OF STATISTICS, 2015, 43 (03): : 937 - 961
  • [4] Minimax predictive density for sparse count data
    Yano, Keisuke
    Kaneko, Ryoya
    Komaki, Fumiyasu
    [J]. BERNOULLI, 2021, 27 (02) : 1212 - 1238
  • [5] Minimax kernels for density estimation with biased data
    Wu, CO
    Mao, AQ
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1996, 48 (03) : 451 - 467
  • [6] Model Selection and Minimax Estimation in Generalized Linear Models
    Abramovich, Felix
    Grinshtein, Vadim
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (06) : 3721 - 3730
  • [7] Data compression and selection of variables, with respect to exact inference
    Läuter, J
    Kropf, S
    [J]. COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 273 - 278
  • [8] Asymptotic minimax risk of predictive density estimation for non-parametric regression
    Xu, Xinyi
    Liang, Feng
    [J]. BERNOULLI, 2010, 16 (02) : 543 - 560
  • [9] BANDWIDTH SELECTION IN KERNEL DENSITY ESTIMATION: ORACLE INEQUALITIES AND ADAPTIVE MINIMAX OPTIMALITY
    Goldenshluger, Alexander
    Lepski, Oleg
    [J]. ANNALS OF STATISTICS, 2011, 39 (03): : 1608 - 1632
  • [10] Asymptotically local minimax estimation of infinitely smooth density with censored data
    Belitser, E
    Levit, B
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2001, 53 (02) : 289 - 306