Homogeneous structures on three-dimensional Lorentzian manifolds

被引:86
|
作者
Calvaruso, Giovanni [1 ]
机构
[1] Univ Lecce, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
关键词
Lorentzian manifolds; homogeneous pseudo-Riemannian structures; symmetric spaces;
D O I
10.1016/j.geomphys.2006.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that any non-symmetric three-dimensional homogeneous Lorentzian manifold is isometric to a Lie group equipped with a left-invariant Lorentzian metric. We then classify all three-dimensional homogeneous Lorentzian manifolds. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1279 / 1291
页数:13
相关论文
共 50 条
  • [31] Homogeneous geodesics of three-dimensional unimodular Lorentzian Lie groups
    Calvaruso, Giovanni
    Marinosci, Rosa Anna
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2006, 3 (3-4) : 467 - 481
  • [32] Homogeneous Geodesics of Three-Dimensional Unimodular Lorentzian Lie Groups
    Giovanni Calvaruso
    Rosa Anna Marinosci
    Mediterranean Journal of Mathematics, 2006, 3 : 467 - 481
  • [33] Three-dimensional homogeneous Lorentzian metrics with prescribed Ricci tensor
    Calvarusoa, Giovanni
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (12)
  • [34] THREE-DIMENSIONAL LORENTZIAN PARA-KENMOTSU MANIFOLDS AND YAMABE SOLITONS
    Pankaj
    Chaubey, Sudhakar K.
    Prasad, Rajendra
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (04): : 613 - 626
  • [35] The Lorentzian Lichnerowicz conjecture for real-analytic, three-dimensional manifolds
    Frances, Charles
    Melnick, Karin
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (803): : 183 - 218
  • [36] Spinorial characterizations of surfaces into three-dimensional homogeneous manifolds
    Roth, Julien
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (6-8) : 1045 - 1061
  • [37] Mixed type surfaces with bounded Gaussian curvature in three-dimensional Lorentzian manifolds
    Honda, Atsufumi
    Saji, Kentaro
    Teramoto, Keisuke
    ADVANCES IN MATHEMATICS, 2020, 365
  • [38] Existence and classification of three-dimensional Lorentzian manifolds with prescribed distinct Ricci eigenvalues
    Kowalski, Oldrich
    Sekizawa, Masami
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 99 : 232 - 238
  • [39] Three-dimensional locally homogeneous Lorentzian affine hyperspheres with constant sectional curvature
    Ooguri M.
    Journal of Geometry, 2013, 104 (1) : 137 - 152
  • [40] Reductive homogeneous Lorentzian manifolds
    Alekseevsky, Dmitri
    Chrysikos, Ioannis
    Galaev, Anton
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 84