Homogeneous structures on three-dimensional Lorentzian manifolds

被引:86
|
作者
Calvaruso, Giovanni [1 ]
机构
[1] Univ Lecce, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
关键词
Lorentzian manifolds; homogeneous pseudo-Riemannian structures; symmetric spaces;
D O I
10.1016/j.geomphys.2006.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that any non-symmetric three-dimensional homogeneous Lorentzian manifold is isometric to a Lie group equipped with a left-invariant Lorentzian metric. We then classify all three-dimensional homogeneous Lorentzian manifolds. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1279 / 1291
页数:13
相关论文
共 50 条
  • [21] Certain homogeneous paracontact three-dimensional Lorentzian metrics
    Haji-Badali, Ali
    Sourchi, Elham
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (01)
  • [22] Corrigendum to “Three-dimensional Lorentzian homogeneous Ricci solitons”
    Brozos-Vázquez M.
    Calvaruso G.
    García-Río E.
    Gavino-Fernández S.
    Israel Journal of Mathematics, 2023, 255 (2) : 975 - 984
  • [23] Three-dimensional homogeneous Lorentzian structuresThree-dimensional homogeneous Lorentzian structuresG. Calvaruso, A. Zaeim
    Giovanni Calvaruso
    Amirhesam Zaeim
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2025, 119 (2):
  • [24] Generalized Ricci Solitons on Three-Dimensional Lorentzian Walker Manifolds
    Vahid Pirhadi
    Ghodratallah Fasihi-Ramandi
    Shahroud Azami
    Journal of Nonlinear Mathematical Physics, 2023, 30 : 1409 - 1423
  • [25] A characterization of homogeneous three-dimensional CR manifolds
    Cheng, Jih-Hsin
    Malchiodi, Andrea
    Yang, Paul
    REVISTA MATEMATICA IBEROAMERICANA, 2024, 40 (06) : 2325 - 2338
  • [26] Generalized Ricci Solitons on Three-Dimensional Lorentzian Walker Manifolds
    Pirhadi, Vahid
    Fasihi-Ramandi, Ghodratallah
    Azami, Shahroud
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (04) : 1409 - 1423
  • [27] Four-dimensional homogeneous Lorentzian manifolds
    Calvaruso, Giovanni
    Zaeim, Amirhesam
    MONATSHEFTE FUR MATHEMATIK, 2014, 174 (03): : 377 - 402
  • [28] Four-dimensional homogeneous Lorentzian manifolds
    Giovanni Calvaruso
    Amirhesam Zaeim
    Monatshefte für Mathematik, 2014, 174 : 377 - 402
  • [29] Curvature homogeneous Lorentzian three-manifolds
    Giovanni Calvaruso
    Annals of Global Analysis and Geometry, 2009, 36 : 1 - 17
  • [30] Curvature homogeneous Lorentzian three-manifolds
    Calvaruso, Giovanni
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 36 (01) : 1 - 17