Three-dimensional homogeneous Lorentzian metrics with prescribed Ricci tensor

被引:4
|
作者
Calvarusoa, Giovanni [1 ]
机构
[1] Univ Lecce, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
关键词
D O I
10.1063/1.2825176
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a system of partial differential equations, whose solutions permit to determine explicitly locally homogeneous Lorentzian metrics in R(3) having the prescribed admissible Ricci tensor. Solutions of this system are presented for all the different models of homogeneous Lorentzian three spaces. (c) 2007 American Institute of Physics.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] THREE-DIMENSIONAL LORENTZIAN HOMOGENEOUS RICCI SOLITONS
    Brozos-Vazquez, M.
    Calvaruso, G.
    Garcia-Rio, E.
    Gavino-Fernandez, S.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2012, 188 (01) : 385 - 403
  • [2] Three-dimensional Lorentzian homogeneous Ricci solitons
    M. Brozos-Vázquez
    G. Calvaruso
    E. García-Río
    S. Gavino-Fernández
    [J]. Israel Journal of Mathematics, 2012, 188 : 385 - 403
  • [3] Corrigendum to “Three-dimensional Lorentzian homogeneous Ricci solitons”
    Brozos-Vázquez M.
    Calvaruso G.
    García-Río E.
    Gavino-Fernández S.
    [J]. Israel Journal of Mathematics, 2023, 255 (2) : 975 - 984
  • [4] Certain homogeneous paracontact three-dimensional Lorentzian metrics
    Haji-Badali, Ali
    Sourchi, Elham
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (01)
  • [5] Existence and classification of three-dimensional Lorentzian manifolds with prescribed distinct Ricci eigenvalues
    Kowalski, Oldrich
    Sekizawa, Masami
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2016, 99 : 232 - 238
  • [6] Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds
    Calvaruso, G.
    [J]. GEOMETRIAE DEDICATA, 2007, 127 (01) : 99 - 119
  • [7] Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds
    G. Calvaruso
    [J]. Geometriae Dedicata, 2007, 127 : 99 - 119
  • [8] Homogeneous three-dimensional Lorentzian spaces
    Josep Ferrando, Joan
    Antonio Saez, Juan
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (16)
  • [9] On Prescribed Values of the Operator of Sectional Curvature on Three-Dimensional Locally Homogeneous Lorentzian Manifolds
    Klepikova S.V.
    Khromova O.P.
    [J]. Journal of Mathematical Sciences, 2023, 276 (4) : 508 - 516
  • [10] The structure of the Ricci tensor on locally homogeneous Lorentzian gradient Ricci solitons
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gavino-Fernandez, S.
    Gilkey, P.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (03) : 461 - 482