THREE-DIMENSIONAL LORENTZIAN PARA-KENMOTSU MANIFOLDS AND YAMABE SOLITONS

被引:4
|
作者
Pankaj [1 ]
Chaubey, Sudhakar K. [2 ]
Prasad, Rajendra [3 ]
机构
[1] Univ Technol & Appl Sci Muscat, Math Sect, IT Dept, Muscat, Oman
[2] Univ Technol & Appl Sci Shinas, Dept Informat Technol, Sect Math, POB 77, Shinas 324, Oman
[3] Univ Lucknow, Dept Math & Astron, Lucknow, Uttar Pradesh, India
来源
HONAM MATHEMATICAL JOURNAL | 2021年 / 43卷 / 04期
关键词
Yamabe Soliton; eta-Yamabe soliton; Lorentzian para-Kenmotsu manifolds; curvature tensor; eta-Einstein manifold;
D O I
10.5831/HMJ.2021.43.4.613
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the present work is to study the properties of three-dimensional Lorentzian para-Kenmotsu manifolds equipped with a Yamabe soliton. It is proved that every three-dimensional Lorentzian para-Kenmotsu manifold is Ricci semi-symmetric if and only if it is Einstein. Also, if the metric of a three-dimensional semi-symmetric Lorentzian para-Kenmotsu manifold is a Yamabe soliton, then the soliton is shrinking and the flow vector field is Killing. We also study the properties of three-dimensional Ricci symmetric and eta-parallel Lorentzian para-Kenmotsu manifolds with Yamabe solitons. Finally, we give a non-trivial example of three-dimensional Lorentzian para-Kenmotsu manifold.
引用
收藏
页码:613 / 626
页数:14
相关论文
共 50 条
  • [1] η-Ricci--Yamabe and *-η-Ricci--Yamabe solitons in Lorentzian para-Kenmotsu manifolds
    Prasad, Rajendra
    Haseeb, Abdul
    Kumar, Vinay
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (04): : 375 - 384
  • [2] Yamabe solitons on three-dimensional Kenmotsu manifolds
    Wang, Yaning
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2016, 23 (03) : 345 - 355
  • [3] STUDY ON LORENTZIAN PARA-KENMOTSU MANIFOLD WITH k- ALMOST YAMABE SOLITONS
    Aishwarya, Chandrashekharappa
    Venkatesha, Venkatesha
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (04): : 917 - 925
  • [4] Certain Results on Lorentzian Para-Kenmotsu Manifolds
    Haseeb, Abdul
    Prasad, Rajendra
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (03): : 201 - 220
  • [5] η-RICCI SOLUTIONS ON LORENTZIAN PARA-KENMOTSU MANIFOLDS
    Pandey, Shashikant
    Singh, Abhishek
    Mishra, Vishnu Narayan
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (02): : 419 - 434
  • [6] Notes on ?-Einstein solitons on para-Kenmotsu manifolds
    Yoldas, Halil Ibrahim
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (17) : 17632 - 17640
  • [7] A note on pseudoparallel submanifolds of Lorentzian para-Kenmotsu manifolds
    Mert, Tugba
    Atceken, Mehmet
    FILOMAT, 2023, 37 (15) : 5095 - 5107
  • [8] A note on gradient solitons on para-Kenmotsu manifolds
    De, Krishnendu
    De, Uday Chand
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (01)
  • [9] On three-dimensional lorentzian β-kenmotsu manifolds
    Yaliniz, A. Funda
    Yildiz, Ahmet
    Turan, Mine
    KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2009, 36 (2A): : 51 - 62
  • [10] Curvature Properties of η-Ricci Solitons on Para-Kenmotsu Manifolds
    Singh, Abhishek
    Kishor, Shyam
    KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (01): : 149 - 161