Certain Results on Lorentzian Para-Kenmotsu Manifolds

被引:19
|
作者
Haseeb, Abdul [1 ]
Prasad, Rajendra [2 ]
机构
[1] Jazan Univ, Dept Math, Fac Sci, Jazan 2097, Saudi Arabia
[2] Univ Lucknow, Dept Math & Astron, Lucknow 226007, Uttar Pradesh, India
来源
关键词
Lorentzian para-Kenmotsu manifold; eta-Einstein manifold; Curvature tensor; Quarter-symmetric metric connection;
D O I
10.5269/bspm.40607
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of the present paper is to study Lorentzian para-Kenmotsu manifolds with respect to the quarter-symmetric metric connection. First, we study Lorentzian para-Kenmotsu manifolds with respect to the quarter-symmetric metric connection satisfying the curvature conditions (R) over bar.(S) over bar = 0 and (S) over bar.(R) over bar = 0. Next, we study phi-conformally flat, phi-conharmonically flat, phi-concircularly flat, phi-projectively flat and conformally flat Lorentzian para-Kenmotsu manifolds with respect to the quarter-symmetric metric connection and it is shown that in each of these cases the manifold is a generalized eta-Einstein manifold.
引用
收藏
页码:201 / 220
页数:20
相关论文
共 50 条
  • [1] SOME RESULTS ON INVARINAT SUBMANIFOLDS OF LORENTZIAN PARA-KENMOTSU MANIFOLDS
    Atceken, Mehmet
    KOREAN JOURNAL OF MATHEMATICS, 2022, 30 (01): : 175 - 185
  • [2] η-RICCI SOLUTIONS ON LORENTZIAN PARA-KENMOTSU MANIFOLDS
    Pandey, Shashikant
    Singh, Abhishek
    Mishra, Vishnu Narayan
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (02): : 419 - 434
  • [3] CERTAIN RESULTS ON INVARIANT SUBMANIFOLDS OF PARA-KENMOTSU MANIFOLDS
    Atceken, Mehmet
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (01): : 35 - 46
  • [4] A note on pseudoparallel submanifolds of Lorentzian para-Kenmotsu manifolds
    Mert, Tugba
    Atceken, Mehmet
    FILOMAT, 2023, 37 (15) : 5095 - 5107
  • [5] CHARACTERIZATION OF (6-SYMMETRIC LORENTZIAN PARA-KENMOTSU MANIFOLDS
    Prasad, Rajendra
    Verma, Abhinav
    Yadav, Vindhyachal Singh
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (03): : 635 - 647
  • [6] On Para-Kenmotsu Manifolds
    Zamkovoy, Simeon
    FILOMAT, 2018, 32 (14) : 4971 - 4980
  • [7] ON ALMOST α-PARA-KENMOTSU MANIFOLDS SATISFYING CERTAIN CONDITIONS
    Erken, I. Kupeli
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 559 - 571
  • [8] THREE-DIMENSIONAL LORENTZIAN PARA-KENMOTSU MANIFOLDS AND YAMABE SOLITONS
    Pankaj
    Chaubey, Sudhakar K.
    Prasad, Rajendra
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (04): : 613 - 626
  • [9] Certain Results of Conformal and *-Conformal Ricci Soliton on Para-Cosymplectic and Para-Kenmotsu Manifolds
    Sarkar, Sumanjit
    Dey, Santu
    Chen, Xiaomin
    FILOMAT, 2021, 35 (15) : 5001 - 5015
  • [10] Certain properties of η-Ricci soliton on η-Einstein para-Kenmotsu manifolds
    Almia, Priyanka
    Upreti, Jaya
    FILOMAT, 2023, 37 (28) : 9575 - 9585