Certain Results on Lorentzian Para-Kenmotsu Manifolds

被引:19
|
作者
Haseeb, Abdul [1 ]
Prasad, Rajendra [2 ]
机构
[1] Jazan Univ, Dept Math, Fac Sci, Jazan 2097, Saudi Arabia
[2] Univ Lucknow, Dept Math & Astron, Lucknow 226007, Uttar Pradesh, India
来源
关键词
Lorentzian para-Kenmotsu manifold; eta-Einstein manifold; Curvature tensor; Quarter-symmetric metric connection;
D O I
10.5269/bspm.40607
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of the present paper is to study Lorentzian para-Kenmotsu manifolds with respect to the quarter-symmetric metric connection. First, we study Lorentzian para-Kenmotsu manifolds with respect to the quarter-symmetric metric connection satisfying the curvature conditions (R) over bar.(S) over bar = 0 and (S) over bar.(R) over bar = 0. Next, we study phi-conformally flat, phi-conharmonically flat, phi-concircularly flat, phi-projectively flat and conformally flat Lorentzian para-Kenmotsu manifolds with respect to the quarter-symmetric metric connection and it is shown that in each of these cases the manifold is a generalized eta-Einstein manifold.
引用
收藏
页码:201 / 220
页数:20
相关论文
共 50 条
  • [31] *-η-Ricci Soliton and Gradient Almost *-η-Ricci Soliton Within the Framework of Para-Kenmotsu Manifolds
    Dey, Santu
    Turki, Nasser Bin
    FRONTIERS IN PHYSICS, 2022, 10
  • [32] On some important characterizations of Lorentz para-Kenmotsu manifolds on some special curvature tensors
    Mert, Tugba
    Atceken, Mehmet
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (01)
  • [33] Conformal semi-slant submersions from Lorentzian para Kenmotsu manifolds
    Prasad, Rajendra
    Singh, Punit Kumar
    Kumar, Sushil
    TBILISI MATHEMATICAL JOURNAL, 2021, 14 (01) : 191 - 209
  • [34] The Zamkovoy canonical paracontact connection on a para-Kenmotsu manifold
    Prakasha, D. G.
    Harish, H.
    Veeresha, P.
    Venkatesha
    CUBO-A MATHEMATICAL JOURNAL, 2021, 23 (02): : 191 - 206
  • [35] CERTAIN RESULTS ON KENMOTSU PSEUDO-METRIC MANIFOLDS
    Naik, Devaraja Mallesha
    Venkatesha
    Prakasha, D. G.
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (02) : 1083 - 1099
  • [36] On a Class of α-Para Kenmotsu Manifolds
    K. Srivastava
    S. K. Srivastava
    Mediterranean Journal of Mathematics, 2016, 13 : 391 - 399
  • [37] On a Class of α-Para Kenmotsu Manifolds
    Srivastava, K.
    Srivastava, S. K.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (01) : 391 - 399
  • [38] On three-dimensional lorentzian β-kenmotsu manifolds
    Yaliniz, A. Funda
    Yildiz, Ahmet
    Turan, Mine
    KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2009, 36 (2A): : 51 - 62
  • [39] Some Properties Curvture of Lorentzian Kenmotsu Manifolds
    Sari, Ramazan
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2020, 5 (01) : 283 - 292
  • [40] CERTAIN RESULTS ON ALMOST KENMOTSU MANIFOLDS WITH CONFORMAL REEB FOLIATION
    Ghosh, Gopal
    Majhi, Pradip
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (01): : 261 - 272