On some important characterizations of Lorentz para-Kenmotsu manifolds on some special curvature tensors

被引:0
|
作者
Mert, Tugba [1 ]
Atceken, Mehmet [2 ]
机构
[1] Sivas Cumhuriyet Univ, Math, TR-58140 Sivas, Turkiye
[2] Aksaray Univ, Math, TR-68100 Aksaray, Turkiye
关键词
Lorentzian manifold; para-Kenmotsu manifold; pseudoparallel submanifold; RICCI SOLITONS;
D O I
10.1142/S1793557123502467
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, some properties of Lorentz para-Kenmotsu manifolds are studied using specified curvature tensors. The Lorentz para-Kenmotsu manifold is investigated in terms of the curvature tensors W-8 and W-9. Initially, the tensor-based characterization of semisymmetric Lorentz para-Kenmotsu manifolds is studied. Subsequently, we consider the Lorentzian para-Kenmotsu manifold, which admits almost eta-Ricci solitons via these curvature tensors. According to the W-8 and W-9 curvature tensors, Ricci pseudosymmetry notions of Lorentzian para-Kenmotsu manifolds accepting eta-Ricci soliton have been developed. Following that, required conditions for the Lorentzian para-Kenmotsu manifold, admitting eta-Ricci soliton to be Ricci semisymmetric, are presented based on the curvature tensors chosen. Further, various characterizations are provided, and classifications are made under certain conditions. Finally, the characterizations of the invariant submanifolds of Lorentz para-Kenmotsu manifold on the W(8 )and W-9 curvature tensors are investigated. We obtained the necessary and sufficient conditions for an invariant submanifold of a para-Kenmotsu to be W-8 and W-9 pseudoparallel.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] η-RICCI SOLITONS ON PARA-KENMOTSU MANIFOLDS WITH SOME CURVATURE CONDITIONS
    Mondal, Ashis
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (04): : 705 - 714
  • [2] CLASSIFICATION OF SOME ALMOST α-PARA-KENMOTSU MANIFOLDS
    Pan, Quanxiang
    Liu, Ximin
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (05): : 1327 - 1341
  • [3] Curvature Properties of η-Ricci Solitons on Para-Kenmotsu Manifolds
    Singh, Abhishek
    Kishor, Shyam
    KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (01): : 149 - 161
  • [4] On Para-Kenmotsu Manifolds
    Zamkovoy, Simeon
    FILOMAT, 2018, 32 (14) : 4971 - 4980
  • [5] SOME RESULTS ON INVARINAT SUBMANIFOLDS OF LORENTZIAN PARA-KENMOTSU MANIFOLDS
    Atceken, Mehmet
    KOREAN JOURNAL OF MATHEMATICS, 2022, 30 (01): : 175 - 185
  • [6] ON GENERALIZED PROJECTIVE CURVATURE TENSOR OF PARA-KENMOTSU MANIFOLDS
    Raghuwanshi, Teerathram
    Pandey, Giteshwari
    Pandey, Manoj Kumar
    Goyal, Anil
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (01) : 383 - 394
  • [7] On Generalized W2-Curvature Tensor of Para-Kenmotsu Manifolds
    Raghuwanshi, Teerathram
    Pandey, Shravan Kumar
    Pandey, Manoj Kumar
    Goyal, Anil
    FILOMAT, 2022, 36 (03) : 741 - 752
  • [8] Some Curvature Properties of Kenmotsu Manifolds
    Taleshian, A.
    Hosseinzadeh, A. A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2015, 85 (03) : 407 - 413
  • [9] Some Curvature Properties of Kenmotsu Manifolds
    A. Taleshian
    A. A. Hosseinzadeh
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2015, 85 : 407 - 413
  • [10] Invariant and holomorphic distributions on para-Kenmotsu manifolds
    Blaga A.M.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2015, 61 (2) : 263 - 276