On some important characterizations of Lorentz para-Kenmotsu manifolds on some special curvature tensors

被引:0
|
作者
Mert, Tugba [1 ]
Atceken, Mehmet [2 ]
机构
[1] Sivas Cumhuriyet Univ, Math, TR-58140 Sivas, Turkiye
[2] Aksaray Univ, Math, TR-68100 Aksaray, Turkiye
关键词
Lorentzian manifold; para-Kenmotsu manifold; pseudoparallel submanifold; RICCI SOLITONS;
D O I
10.1142/S1793557123502467
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, some properties of Lorentz para-Kenmotsu manifolds are studied using specified curvature tensors. The Lorentz para-Kenmotsu manifold is investigated in terms of the curvature tensors W-8 and W-9. Initially, the tensor-based characterization of semisymmetric Lorentz para-Kenmotsu manifolds is studied. Subsequently, we consider the Lorentzian para-Kenmotsu manifold, which admits almost eta-Ricci solitons via these curvature tensors. According to the W-8 and W-9 curvature tensors, Ricci pseudosymmetry notions of Lorentzian para-Kenmotsu manifolds accepting eta-Ricci soliton have been developed. Following that, required conditions for the Lorentzian para-Kenmotsu manifold, admitting eta-Ricci soliton to be Ricci semisymmetric, are presented based on the curvature tensors chosen. Further, various characterizations are provided, and classifications are made under certain conditions. Finally, the characterizations of the invariant submanifolds of Lorentz para-Kenmotsu manifold on the W(8 )and W-9 curvature tensors are investigated. We obtained the necessary and sufficient conditions for an invariant submanifold of a para-Kenmotsu to be W-8 and W-9 pseudoparallel.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] CHARACTERIZATION OF (6-SYMMETRIC LORENTZIAN PARA-KENMOTSU MANIFOLDS
    Prasad, Rajendra
    Verma, Abhinav
    Yadav, Vindhyachal Singh
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (03): : 635 - 647
  • [22] Characterization of almost *-conformal η-Ricci soliton on para-Kenmotsu manifolds
    Dey, Santu
    Uddin, Siraj
    FILOMAT, 2023, 37 (11) : 3601 - 3614
  • [23] Para-Kenmotsu manifolds admitting semi-symmetric structures
    Sarkar, Nihar
    Baishya, Kanak Kanti
    Blaga, Adara M.
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2021, 13 (02) : 468 - 482
  • [24] Certain properties of η-Ricci soliton on η-Einstein para-Kenmotsu manifolds
    Almia, Priyanka
    Upreti, Jaya
    FILOMAT, 2023, 37 (28) : 9575 - 9585
  • [25] On a type of almost Kenmotsu manifolds with harmonic curvature tensors
    Wang, Yaning
    Liu, Ximin
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2015, 22 (01) : 15 - 24
  • [26] GENERALIZED η-RICCI SOLITONS ON PARA-KENMOTSU MANIFOLDS ASSOCIATED TO THE ZAMKOVOY CONNECTION
    Azami, Shahroud
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (01): : 175 - 186
  • [27] THREE-DIMENSIONAL LORENTZIAN PARA-KENMOTSU MANIFOLDS AND YAMABE SOLITONS
    Pankaj
    Chaubey, Sudhakar K.
    Prasad, Rajendra
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (04): : 613 - 626
  • [28] On a class of Lorentzian para-Kenmotsu manifolds admitting the Weyl-projective curvature tensor of type (1, 3)
    Prasad, K. L. Sai
    Devi, S. Sunitha
    Deekshitulu, G. V. S. R.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (45): : 990 - 1001
  • [29] CONFORMAL VECTOR FIELDS ON N(k)-PARACONTACT AND PARA-KENMOTSU MANIFOLDS
    Sardar, Arpan
    De, Uday Chand
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (03) : 1515 - 1525
  • [30] Certain Results of Conformal and *-Conformal Ricci Soliton on Para-Cosymplectic and Para-Kenmotsu Manifolds
    Sarkar, Sumanjit
    Dey, Santu
    Chen, Xiaomin
    FILOMAT, 2021, 35 (15) : 5001 - 5015