On some important characterizations of Lorentz para-Kenmotsu manifolds on some special curvature tensors

被引:0
|
作者
Mert, Tugba [1 ]
Atceken, Mehmet [2 ]
机构
[1] Sivas Cumhuriyet Univ, Math, TR-58140 Sivas, Turkiye
[2] Aksaray Univ, Math, TR-68100 Aksaray, Turkiye
关键词
Lorentzian manifold; para-Kenmotsu manifold; pseudoparallel submanifold; RICCI SOLITONS;
D O I
10.1142/S1793557123502467
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, some properties of Lorentz para-Kenmotsu manifolds are studied using specified curvature tensors. The Lorentz para-Kenmotsu manifold is investigated in terms of the curvature tensors W-8 and W-9. Initially, the tensor-based characterization of semisymmetric Lorentz para-Kenmotsu manifolds is studied. Subsequently, we consider the Lorentzian para-Kenmotsu manifold, which admits almost eta-Ricci solitons via these curvature tensors. According to the W-8 and W-9 curvature tensors, Ricci pseudosymmetry notions of Lorentzian para-Kenmotsu manifolds accepting eta-Ricci soliton have been developed. Following that, required conditions for the Lorentzian para-Kenmotsu manifold, admitting eta-Ricci soliton to be Ricci semisymmetric, are presented based on the curvature tensors chosen. Further, various characterizations are provided, and classifications are made under certain conditions. Finally, the characterizations of the invariant submanifolds of Lorentz para-Kenmotsu manifold on the W(8 )and W-9 curvature tensors are investigated. We obtained the necessary and sufficient conditions for an invariant submanifold of a para-Kenmotsu to be W-8 and W-9 pseudoparallel.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Notes on ?-Einstein solitons on para-Kenmotsu manifolds
    Yoldas, Halil Ibrahim
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (17) : 17632 - 17640
  • [12] Certain Results on Lorentzian Para-Kenmotsu Manifolds
    Haseeb, Abdul
    Prasad, Rajendra
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (03): : 201 - 220
  • [13] η-RICCI SOLUTIONS ON LORENTZIAN PARA-KENMOTSU MANIFOLDS
    Pandey, Shashikant
    Singh, Abhishek
    Mishra, Vishnu Narayan
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (02): : 419 - 434
  • [14] A note on gradient solitons on para-Kenmotsu manifolds
    De, Krishnendu
    De, Uday Chand
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (01)
  • [15] Certain results on para-Kenmotsu manifolds equipped with M-projective curvature tensor
    Singh, Abhishek
    Kishor, Shyam
    TBILISI MATHEMATICAL JOURNAL, 2018, 11 (03): : 125 - 132
  • [16] A note on pseudoparallel submanifolds of Lorentzian para-Kenmotsu manifolds
    Mert, Tugba
    Atceken, Mehmet
    FILOMAT, 2023, 37 (15) : 5095 - 5107
  • [17] On some special classes of Kenmotsu manifolds
    Hong, Sungpyo
    Ozgur, Cihan
    Tripathi, Mukut Mani
    KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2006, 33 (02): : 19 - 32
  • [18] ON ALMOST α-PARA-KENMOTSU MANIFOLDS SATISFYING CERTAIN CONDITIONS
    Erken, I. Kupeli
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 559 - 571
  • [19] A NOTE ON EINSTEIN-LIKE PARA-KENMOTSU MANIFOLDS
    Prasad, Rajendra
    Verma, Sandeep Kumar
    Kumar, Sumeet
    HONAM MATHEMATICAL JOURNAL, 2019, 41 (04): : 669 - 682
  • [20] CERTAIN RESULTS ON INVARIANT SUBMANIFOLDS OF PARA-KENMOTSU MANIFOLDS
    Atceken, Mehmet
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (01): : 35 - 46