Certain Results on Lorentzian Para-Kenmotsu Manifolds

被引:19
|
作者
Haseeb, Abdul [1 ]
Prasad, Rajendra [2 ]
机构
[1] Jazan Univ, Dept Math, Fac Sci, Jazan 2097, Saudi Arabia
[2] Univ Lucknow, Dept Math & Astron, Lucknow 226007, Uttar Pradesh, India
来源
关键词
Lorentzian para-Kenmotsu manifold; eta-Einstein manifold; Curvature tensor; Quarter-symmetric metric connection;
D O I
10.5269/bspm.40607
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of the present paper is to study Lorentzian para-Kenmotsu manifolds with respect to the quarter-symmetric metric connection. First, we study Lorentzian para-Kenmotsu manifolds with respect to the quarter-symmetric metric connection satisfying the curvature conditions (R) over bar.(S) over bar = 0 and (S) over bar.(R) over bar = 0. Next, we study phi-conformally flat, phi-conharmonically flat, phi-concircularly flat, phi-projectively flat and conformally flat Lorentzian para-Kenmotsu manifolds with respect to the quarter-symmetric metric connection and it is shown that in each of these cases the manifold is a generalized eta-Einstein manifold.
引用
收藏
页码:201 / 220
页数:20
相关论文
共 50 条
  • [21] On a class of Lorentzian para-Kenmotsu manifolds admitting the Weyl-projective curvature tensor of type (1, 3)
    Prasad, K. L. Sai
    Devi, S. Sunitha
    Deekshitulu, G. V. S. R.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (45): : 990 - 1001
  • [22] Para-Kenmotsu manifolds admitting semi-symmetric structures
    Sarkar, Nihar
    Baishya, Kanak Kanti
    Blaga, Adara M.
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2021, 13 (02) : 468 - 482
  • [23] η-RICCI SOLITONS ON PARA-KENMOTSU MANIFOLDS WITH SOME CURVATURE CONDITIONS
    Mondal, Ashis
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (04): : 705 - 714
  • [24] CHARACTERISTICS OF LORENTZIAN-PARA KENMOTSU SPACETIME MANIFOLDS
    Kumar, Vinay
    Prasad, Rajendra
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (04): : 965 - 976
  • [25] STUDY ON LORENTZIAN PARA-KENMOTSU MANIFOLD WITH k- ALMOST YAMABE SOLITONS
    Aishwarya, Chandrashekharappa
    Venkatesha, Venkatesha
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (04): : 917 - 925
  • [26] GENERALIZED η-RICCI SOLITONS ON PARA-KENMOTSU MANIFOLDS ASSOCIATED TO THE ZAMKOVOY CONNECTION
    Azami, Shahroud
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (01): : 175 - 186
  • [27] CONFORMAL VECTOR FIELDS ON N(k)-PARACONTACT AND PARA-KENMOTSU MANIFOLDS
    Sardar, Arpan
    De, Uday Chand
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (03) : 1515 - 1525
  • [28] On Generalized W2-Curvature Tensor of Para-Kenmotsu Manifolds
    Raghuwanshi, Teerathram
    Pandey, Shravan Kumar
    Pandey, Manoj Kumar
    Goyal, Anil
    FILOMAT, 2022, 36 (03) : 741 - 752
  • [29] PARA-KENMOTSU METRIC AS A η-RICCI SOLITON
    Kundu, Satyabrota
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (02): : 445 - 453
  • [30] Some results on Lorentzian beta-Kenmotsu manifolds
    Basavarajappa, N. S.
    Bagewadi, C. S.
    Prakasha, D. G.
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2008, 35 : 7 - 14