Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian

被引:38
|
作者
Zhang Binlin [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Wang, Li [4 ]
机构
[1] Heilongjiang Inst Technol, Dept Math, Harbin 150050, Heilongjiang, Peoples R China
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Romanian Acad, Inst Math Simion Stoilow, POB 1-764, Bucharest 014700, Romania
[4] East China Jiaotong Univ, Coll Sci, Nanchang 330013, Jiangxi, Peoples R China
基金
黑龙江省自然科学基金; 中国国家自然科学基金;
关键词
Fractional Laplacian; Kirchhoff-type problem; critical groups; Morse theory; NONTRIVIAL SOLUTIONS; MULTIPLICITY;
D O I
10.1017/prm.2018.105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and multiplicity of solutions for Kirchhoff-type superlinear problems involving non-local integro-differential operators. As a particular case, we consider the following Kirchhoff-type fractional Laplace equation:.{M(integral integral(R2N) vertical bar u(x) -u(y)vertical bar(2)/vertical bar x-y vertical bar(N vertical bar 2s) dxdy) (-Delta)(s)u = f(x,u) in Omega, , where (-.)s is the fractional Laplace operator, s. (0, 1), N > 2s, O is an open bounded subset of RN with smooth boundary.O, M : R+ 0. R+ is a continuous function satisfying certain assumptions, and f(x, u) is superlinear at infinity. By computing the critical groups at zero and at infinity, we obtain the existence of non-trivial solutions for the above problem via Morse theory. To the best of our knowledge, our results are new in the study of Kirchhoff-type Laplacian problems.
引用
收藏
页码:1061 / 1081
页数:21
相关论文
共 50 条
  • [21] EXISTENCE RESULTS FOR KIRCHHOFF TYPE SCHRODINGER-POISSON SYSTEM INVOLVING THE FRACTIONAL LAPLACIAN
    Wang, Li
    Wang, Jun
    Zhang, Binlin
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (05) : 1831 - 1848
  • [22] Existence and non-existence results for fractional Kirchhoff Laplacian problems
    Nemat Nyamoradi
    Vincenzo Ambrosio
    Analysis and Mathematical Physics, 2021, 11
  • [23] Existence and non-existence results for fractional Kirchhoff Laplacian problems
    Nyamoradi, Nemat
    Ambrosio, Vincenzo
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
  • [24] A Uniqueness Result for Strong Singular Kirchhoff-Type Fractional Laplacian Problems
    Wang, Li
    Cheng, Kun
    Zhang, Binlin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03): : 1859 - 1875
  • [25] A Uniqueness Result for Strong Singular Kirchhoff-Type Fractional Laplacian Problems
    Li Wang
    Kun Cheng
    Binlin Zhang
    Applied Mathematics & Optimization, 2021, 83 : 1859 - 1875
  • [26] Existence of Solutions for Kirchhoff-Type Fractional Dirichlet Problem with p-Laplacian
    Kang, Danyang
    Liu, Cuiling
    Zhang, Xingyong
    MATHEMATICS, 2020, 8 (01)
  • [27] Global Existence, Blowup, and Asymptotic Behavior for a Kirchhoff-Type Parabolic Problem Involving the Fractional Laplacian with Logarithmic Term
    Guan, Zihao
    Pan, Ning
    MATHEMATICS, 2024, 12 (01)
  • [28] Existence and multiplicity of solutions for fractional p(x)-Kirchhoff-type problems
    Hao, Zhiwei
    Zheng, Huiqin
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (06): : 3309 - 3321
  • [29] Existence and multiplicity of solutions for critical Kirchhoff-type p-Laplacian problems
    Wang, Li
    Xie, Kun
    Zhang, Binlin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) : 361 - 378
  • [30] An Existence Result for Fractional Kirchhoff-Type Equations
    Bisci, Giovanni Molica
    Tulone, Francesco
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (02): : 181 - 197