Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian

被引:38
|
作者
Zhang Binlin [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Wang, Li [4 ]
机构
[1] Heilongjiang Inst Technol, Dept Math, Harbin 150050, Heilongjiang, Peoples R China
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Romanian Acad, Inst Math Simion Stoilow, POB 1-764, Bucharest 014700, Romania
[4] East China Jiaotong Univ, Coll Sci, Nanchang 330013, Jiangxi, Peoples R China
基金
黑龙江省自然科学基金; 中国国家自然科学基金;
关键词
Fractional Laplacian; Kirchhoff-type problem; critical groups; Morse theory; NONTRIVIAL SOLUTIONS; MULTIPLICITY;
D O I
10.1017/prm.2018.105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and multiplicity of solutions for Kirchhoff-type superlinear problems involving non-local integro-differential operators. As a particular case, we consider the following Kirchhoff-type fractional Laplace equation:.{M(integral integral(R2N) vertical bar u(x) -u(y)vertical bar(2)/vertical bar x-y vertical bar(N vertical bar 2s) dxdy) (-Delta)(s)u = f(x,u) in Omega, , where (-.)s is the fractional Laplace operator, s. (0, 1), N > 2s, O is an open bounded subset of RN with smooth boundary.O, M : R+ 0. R+ is a continuous function satisfying certain assumptions, and f(x, u) is superlinear at infinity. By computing the critical groups at zero and at infinity, we obtain the existence of non-trivial solutions for the above problem via Morse theory. To the best of our knowledge, our results are new in the study of Kirchhoff-type Laplacian problems.
引用
收藏
页码:1061 / 1081
页数:21
相关论文
共 50 条
  • [41] Qualitative Analysis for a Degenerate Kirchhoff-Type Diffusion Equation Involving the Fractional p-Laplacian
    Xu, Guangyu
    Zhou, Jun
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1): : S465 - S508
  • [42] Kirchhoff-type problems with the non-local fractional d(z,.)-Laplacian operator
    Yahiaoui, Ahlem
    Rezaoui, Med-Salem
    Djidel, Omar
    Guefaifia, Rafik
    Boulaaras, Salah
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2025, 2025 (01):
  • [43] Existence and multiplicity of solutions for (p,q)-Laplacian Kirchhoff-type fractional differential equations with impulses
    Wang, Yi
    Tian, Lixin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (13) : 14177 - 14199
  • [44] Qualitative Analysis for a Degenerate Kirchhoff-Type Diffusion Equation Involving the Fractional p-Laplacian
    Guangyu Xu
    Jun Zhou
    Applied Mathematics & Optimization, 2021, 84 : 465 - 508
  • [45] Existence and Multiplicity of Solutions for Fractional κ(ξ)-Kirchhoff-Type Equation
    Sousa, J. Vanterler da C.
    Kucche, Kishor D.
    Nieto, Juan J.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [46] Existence and multiplicity results for Kirchhoff type problems with four-superlinear potentials
    Yang, Ming-Hai
    Han, Zhi-Qing
    APPLICABLE ANALYSIS, 2012, 91 (11) : 2045 - 2055
  • [47] Existence of Solutions for a Singular Double Phase Kirchhoff Type Problems Involving the Fractional q(x, .)-Laplacian Operator
    Rym Chammem
    Abdeljabbar Ghanmi
    Mahfoudh Mechergui
    Complex Analysis and Operator Theory, 2024, 18
  • [48] Existence of Solutions for a Singular Double Phase Kirchhoff Type Problems Involving the Fractional q(x, .)-Laplacian Operator
    Chammem, Rym
    Ghanmi, Abdeljabbar
    Mechergui, Mahfoudh
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (02)
  • [49] Existence Results for a Nonlocal Superlinear Problems Involving p(x)-Laplacian Near to Zero
    El Amrouss, Abdelrachid
    Ourraoui, Anass
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [50] Existence of ground state solutions for Kirchhoff-type problems involving critical Sobolev exponents
    Fan, Haining
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (01) : 371 - 385