Modeling the Overshooting Effect for CMOS Inverter Delay Analysis in Nanometer Technologies

被引:33
|
作者
Huang, Zhangcai [1 ,2 ]
Kurokawa, Atsushi [3 ]
Hashimoto, Masanori [4 ]
Sato, Takashi [5 ]
Jiang, Minglu [6 ]
Inoue, Yasuaki [6 ]
机构
[1] Fukuoka Ind Sci & Technol Fdn, Fukuoka 8140001, Japan
[2] Waseda Univ, Res Ctr Informat Prod & Syst, Kitakyushu, Fukuoka 8080135, Japan
[3] Sanyo Elect Co Ltd, Gifu 5030195, Japan
[4] Osaka Univ, Dept Informat Syst Engn, Grad Sch Informat Sci & Technol, Suita, Osaka 5650871, Japan
[5] Kyoto Univ, Grad Sch Informat, Kyoto 6068501, Japan
[6] Waseda Univ, Grad Sch Informat Prod & Syst, Kitakyushu, Fukuoka 8080135, Japan
关键词
CMOS inverter; gate delay; nanometer technology; overshooting time; switch-resistor model; timing analysis; SUBMICRON CMOS; CIRCUITS; GATES;
D O I
10.1109/TCAD.2009.2035539
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the scaling of complementary metal-oxidesemiconductor (CMOS) technology into the nanometer regime, the overshooting effect due to the input-to-output coupling capacitance has more significant influence on CMOS gate analysis, especially on CMOS gate static timing analysis. In this paper, the overshooting effect is modeled for CMOS inverter delay analysis in nanometer technologies. The results produced by the proposed model are close to simulation program with integrated circuit emphasis (SPICE). Moreover, the influence of the overshooting effect on CMOS inverter analysis is discussed. An analytical model is presented to calculate the CMOS inverter delay time based on the proposed overshooting effect model, which is verified to be in good agreement with SPICE results. Furthermore, the proposed model is used to improve the accuracy of the switch-resistor model for approximating the inverter output waveform.
引用
收藏
页码:250 / 260
页数:11
相关论文
共 50 条
  • [21] Modeling the influence of input-to-output coupling capacitance on CMOS inverter delay
    Huang, Z
    Kurokawa, A
    Yang, Y
    Yu, H
    Inoue, Y
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2006, E89A (04): : 840 - 846
  • [22] Propagation delay and short-circuit power dissipation modeling of the CMOS inverter
    Bisdounis, Labros
    Nikolaidis, Spiridon
    Koufopavlou, Odysseas
    IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1998, 45 (03): : 259 - 270
  • [23] Analog design challenges in nanometer CMOS technologies
    Sansen, Willy
    2007 IEEE ASIAN SOLID-STATE CIRCUITS CONFERENCE, PROCEEDINGS OF TECHNICAL PAPERS, 2007, : 5 - +
  • [24] Inverter delay modelling for submicrometre CMOS process
    Daga, JM
    Turgis, S
    Auvergne, D
    ELECTRONICS LETTERS, 1996, 32 (22) : 2070 - 2071
  • [25] Leakage sources and possible solutions in nanometer CMOS Technologies
    Elgharbawy, Walid M.
    Bayoumi, Magdy A.
    IEEE Circuits and Systems Magazine, 2005, 5 (04) : 6 - 16
  • [26] Analog design challenges inn nanometer CMOS technologies
    Sansen, Willy
    2007 PH.D RESEARCH IN MICROELECTRONICS AND ELECTRONICS, 2007, : 290 - 290
  • [27] Emerging Yield and Reliability Challenges in Nanometer CMOS Technologies
    Gielen, G.
    De Wit, P.
    Maricau, E.
    Loeckx, J.
    Martin-Martinez, J.
    Kaczer, B.
    Groeseneken, G.
    2008 DESIGN, AUTOMATION AND TEST IN EUROPE, VOLS 1-3, 2008, : 1164 - +
  • [28] Recent Developments in Bandgap References for Nanometer CMOS Technologies
    Eberlein, Matthias
    Pretl, Harald
    2020 AUSTROCHIP WORKSHOP ON MICROELECTRONICS (AUSTROCHIP), 2020, : 42 - 46
  • [29] Gigabit photodiodes in standard digital nanometer CMOS technologies
    Hermans, C
    Leroux, P
    Steyaert, M
    ESSDERC 2003: PROCEEDINGS OF THE 33RD EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE, 2003, : 51 - 54
  • [30] Nanometer-scale InGaAs Field-Effect Transistors for THz and CMOS technologies
    del Alamo, J. A.
    2013 PROCEEDINGS OF THE EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2013, : 16 - 21