Unsupervised Manifold Learning for Video Genre Retrieval

被引:0
|
作者
Almeida, Jurandy [1 ]
Pedronette, Daniel C. G. [2 ]
Penatti, Otavio A. B. [3 ]
机构
[1] Fed Univ Sao Paulo UNIFESP, Inst Sci & Technol, BR-12231280 Sao Jose Dos Campos, SP, Brazil
[2] Sao Paulo State Univ, Dept Stat, Appl Math & Computat, BR-13506900 Rio Claro, SP, Brazil
[3] Adv Technol SAMSUNG Res Inst, BR-13097160 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
video genre retrieval; ranking methods; manifold learning; IMAGE RE-RANKING;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the perspective of exploiting pairwise similarities to improve the performance of visual features for video genre retrieval. We employ manifold learning based on the reciprocal neighborhood and on the authority of ranked lists to improve the retrieval of videos considering their genre. A comparative analysis of different visual features is conducted and discussed. We experimentally show in the dataset of 14,838 videos from the MediaEval benchmark that we can achieve considerable improvements in results. In addition, we also evaluate how the late fusion of different visual features using the same manifold learning scheme can improve the retrieval results.
引用
收藏
页码:604 / 612
页数:9
相关论文
共 50 条
  • [21] Unsupervised manifold learning based on multiple feature spaces
    Chahooki, Mohammad Ali Zare
    Charkari, Nasrollah Moghadam
    MACHINE VISION AND APPLICATIONS, 2014, 25 (04) : 1053 - 1065
  • [22] Unsupervised Anomaly Detection via Nonlinear Manifold Learning
    Yousefpour, Amin
    Shishehbor, Mehdi
    Foumani, Zahra Zanjani
    Bostanabad, Ramin
    Journal of Computing and Information Science in Engineering, 2024, 24 (11)
  • [23] Coupled manifold learning for retrieval across modalities
    Kazi, Anees
    Conjeti, Sailesh
    Katouzian, Amin
    Navab, Nassir
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 1321 - 1328
  • [24] Unsupervised Analysis of Human Behavior Based on Manifold Learning
    Liang, Yu-Ming
    Shih, Sheng-Wen
    Shih, Arthur Chun-Chieh
    Liao, Hong-Yuan Mark
    Lin, Cheng-Chung
    ISCAS: 2009 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-5, 2009, : 2605 - +
  • [25] Dense Unsupervised Learning for Video Segmentation
    Araslanov, Nikita
    Schaub-Meyer, Simone
    Roth, Stefan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [26] GRAPH CONVOLUTIONAL NETWORKS AND MANIFOLD RANKING FOR MULTIMODAL VIDEO RETRIEVAL
    de Almeida, Lucas Barbosa
    Valem, Lucas Pascotti
    Guimaraes Pedronette, Daniel Carlos
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2811 - 2815
  • [27] DeepDiffusion: Unsupervised Learning of Retrieval-Adapted Representations via Diffusion-Based Ranking on Latent Feature Manifold
    Furuya, Takahiko
    Ohbuchi, Ryutarou
    IEEE ACCESS, 2022, 10 : 116287 - 116301
  • [28] Deep learning for video game genre classification
    Jiang, Yuhang
    Zheng, Lukun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (14) : 21085 - 21099
  • [29] Deep learning for video game genre classification
    Yuhang Jiang
    Lukun Zheng
    Multimedia Tools and Applications, 2023, 82 : 21085 - 21099
  • [30] Opinion retrieval through unsupervised topological learning
    Rogovschi, Nicoleta
    Grozavu, Nistor
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 3130 - 3134