Unsupervised Manifold Learning for Video Genre Retrieval

被引:0
|
作者
Almeida, Jurandy [1 ]
Pedronette, Daniel C. G. [2 ]
Penatti, Otavio A. B. [3 ]
机构
[1] Fed Univ Sao Paulo UNIFESP, Inst Sci & Technol, BR-12231280 Sao Jose Dos Campos, SP, Brazil
[2] Sao Paulo State Univ, Dept Stat, Appl Math & Computat, BR-13506900 Rio Claro, SP, Brazil
[3] Adv Technol SAMSUNG Res Inst, BR-13097160 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
video genre retrieval; ranking methods; manifold learning; IMAGE RE-RANKING;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the perspective of exploiting pairwise similarities to improve the performance of visual features for video genre retrieval. We employ manifold learning based on the reciprocal neighborhood and on the authority of ranked lists to improve the retrieval of videos considering their genre. A comparative analysis of different visual features is conducted and discussed. We experimentally show in the dataset of 14,838 videos from the MediaEval benchmark that we can achieve considerable improvements in results. In addition, we also evaluate how the late fusion of different visual features using the same manifold learning scheme can improve the retrieval results.
引用
收藏
页码:604 / 612
页数:9
相关论文
共 50 条
  • [31] An Unsupervised Distance Learning Framework for Multimedia Retrieval
    Valem, Lucas Pascotti
    Guimaraes Pedronette, Daniel Carlos
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR'17), 2017, : 107 - 111
  • [32] Audio retrieval: Based on unsupervised learning approach
    Zhao, XY
    Wu, F
    Lin, B
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 1625 - 1628
  • [33] Enhancing Sparse Retrieval via Unsupervised Learning
    Ma, Xueguang
    Fun, Hengxin
    Yin, Xusen
    Mallia, Antonio
    Lin, Jimmy
    ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL IN THE ASIA PACIFIC REGION, SIGIR-AP 2023, 2023, : 150 - 157
  • [34] VIDEO ANALYSIS BASED ON HUMAN POSE FOR UNSUPERVISED SUMMARIZATION AND RETRIEVAL
    Santiago, C.
    Alves, D. M.
    Ferreira, B. Q.
    Carvalho, J.
    Messina, A.
    Costeira, J. P.
    2019 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2019,
  • [35] Unsupervised feature disentanglement for video retrieval in minimally invasive surgery
    Wang, Ziyi
    Lu, Bo
    Gao, Xiaojie
    Jin, Yueming
    Wang, Zerui
    Cheung, Tak Hong
    Heng, Pheng Ann
    Dou, Qi
    Liu, Yunhui
    MEDICAL IMAGE ANALYSIS, 2022, 75
  • [36] Unsupervised Surveillance Video Retrieval based on Human Action and Appearance
    Geronimo, David
    Kjellstrom, Hedvig
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 4630 - 4635
  • [37] Unsupervised Nonlinear Adaptive Manifold Learning for Global and Local Information
    JiajunGao
    FanzhangLi
    BangjunWang
    HelanLiang
    Tsinghua Science and Technology, 2021, 26 (02) : 163 - 171
  • [38] A BFS-Tree of ranking references for unsupervised manifold learning
    Guimaraes Pedronette, Daniel Carlos
    Valem, Lucas Pascotti
    Torres, Ricardo da S.
    PATTERN RECOGNITION, 2021, 111
  • [39] Joint adaptive manifold and embedding learning for unsupervised feature selection
    Wu, Jian-Sheng
    Song, Meng-Xiao
    Min, Weidong
    Lai, Jian-Huang
    Zheng, Wei-Shi
    PATTERN RECOGNITION, 2021, 112
  • [40] On IoT Edge Devices: Manifold Unsupervised Learning for SoM Platforms
    Asad, Saad
    Refaey, Ahmed
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2021,