Unsupervised Manifold Learning for Video Genre Retrieval

被引:0
|
作者
Almeida, Jurandy [1 ]
Pedronette, Daniel C. G. [2 ]
Penatti, Otavio A. B. [3 ]
机构
[1] Fed Univ Sao Paulo UNIFESP, Inst Sci & Technol, BR-12231280 Sao Jose Dos Campos, SP, Brazil
[2] Sao Paulo State Univ, Dept Stat, Appl Math & Computat, BR-13506900 Rio Claro, SP, Brazil
[3] Adv Technol SAMSUNG Res Inst, BR-13097160 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
video genre retrieval; ranking methods; manifold learning; IMAGE RE-RANKING;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the perspective of exploiting pairwise similarities to improve the performance of visual features for video genre retrieval. We employ manifold learning based on the reciprocal neighborhood and on the authority of ranked lists to improve the retrieval of videos considering their genre. A comparative analysis of different visual features is conducted and discussed. We experimentally show in the dataset of 14,838 videos from the MediaEval benchmark that we can achieve considerable improvements in results. In addition, we also evaluate how the late fusion of different visual features using the same manifold learning scheme can improve the retrieval results.
引用
收藏
页码:604 / 612
页数:9
相关论文
共 50 条
  • [41] Unsupervised domain adaptation based on adaptive local manifold learning
    Shi, Kaiming
    Liu, Zhonghua
    Lu, Wenpeng
    Ou, Weihua
    Yang, Chunlei
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [42] Unsupervised Nonlinear Adaptive Manifold Learning for Global and Local Information
    Gao, Jiajun
    Li, Fanzhang
    Wang, Bangjun
    Liang, Helan
    TSINGHUA SCIENCE AND TECHNOLOGY, 2021, 26 (02) : 163 - 171
  • [43] Anomaly Detection Based on Unsupervised Disentangled Representation Learning in Combination with Manifold Learning
    Li, Xiaoyan
    Kiringa, Iluju
    Yeap, Tet
    Zhu, Xiaodan
    Li, Yifeng
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [44] Image Retrieval Based on Manifold Learning and Incorporate Clustering
    Cul, Jianzhu
    Liu, Fuqiang
    Li, Zhipeng
    Li, Jing
    PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL III, 2009, : 544 - 548
  • [45] Unsupervised Learning of Invariant Features Using Video
    Stavens, David
    Thrun, Sebastian
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 1649 - 1656
  • [46] Contrastive Learning for Unsupervised Video Highlight Detection
    Badamdorj, Taivanbat
    Rochan, Mrigank
    Wang, Yang
    Cheng, Li
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 14022 - 14032
  • [47] Unsupervised Learning of Supervoxel Embeddings for Video Segmentation
    Khodabandeh, Mehran
    Muralidharan, Srikanth
    Vahdat, Arash
    Mehrasa, Nazanin
    Pereira, Eduardo M.
    Satoh, Shin'ichi
    Mori, Greg
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2392 - 2397
  • [48] Unsupervised Learning of Event Classes from Video
    Sridhar, Muralikrishna
    Cohn, Anthony G.
    Hogg, David C.
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 1631 - 1638
  • [49] Unsupervised Learning of Functional Categories in Video Scenes
    Turek, Matthew W.
    Hoogs, Anthony
    Collins, Roderic
    COMPUTER VISION-ECCV 2010, PT II, 2010, 6312 : 664 - 677
  • [50] Video SAR Image Despeckling by Unsupervised Learning
    Huang, Xuejun
    Xu, Zhong
    Ding, Jinshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10151 - 10160