Global attractor for Klein-Gordon-Schrodinger lattice system

被引:6
|
作者
Yin, Fu-qi [1 ]
Zhou, Sheng-fan
Yin, Chang-ming
Xiao, Cui-hui
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China
[3] Changsha Univ Sci & Technol, Coll Comp & Commun Engn, Changsha 410076, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
attractor; lattice dynamical system; the covering property; element decomposition; approximation;
D O I
10.1007/s10483-007-0514-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We considered the longtime behavior of solutions of a coupled lattice dynamical system of Klein-Gordon-Schrodinger equation (KGS lattice system). We first proved the existence of a global attractor for the system considered here by introducing an equivalent norm and using "End Tails" of solutions. Then we estimated the upper bound of the Kolmogorov delta-entropy of the global attractor by applying element decomposition and the covering property of a polyhedron by balls of radii delta in the finite dimensional space. Finally, we presented an approximation to the global attractor by the global attractors of finite-dimensional ordinary differential systems.
引用
收藏
页码:695 / 706
页数:12
相关论文
共 50 条
  • [31] Random attractors for the stochastic damped Klein-Gordon-Schrodinger system
    Zhao, Xin
    Li, Yin
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [32] Global existence and uniform decay for the coupled Klein-Gordon-Schrodinger equations
    Cavalcanti, MM
    Cavalcanti, VND
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (03): : 285 - 307
  • [33] ORBITAL STABILITY OF PERIODIC WAVES FOR THE KLEIN-GORDON-SCHRODINGER SYSTEM
    Natali, Fabio
    Pastor, Ademir
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 (01) : 221 - 238
  • [34] Wellposedness in energy space for the nonlinear Klein-Gordon-Schrodinger system
    Shi, Qi-Hong
    Li, Wan-Tong
    Wang, Shu
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 251 : 55 - 64
  • [35] Identification problem of Klein-Gordon-Schrodinger quantum system control
    Wang, Quan-Fang
    QUANTUM INFORMATION PROCESSING, 2015, 14 (02) : 425 - 436
  • [36] ATTRACTORS OF THE KLEIN-GORDON-SCHRODINGER LATTICE SYSTEMS WITH ALMOST PERIODIC NONLINEAR PART
    Abdallah, Ahmed Y.
    Al-Khader, Taqwa M.
    Abu-Shaab, Heba N.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (11): : 6481 - 6500
  • [37] Uniform attractors for non-autonomous Klein-Gordon-Schrodinger lattice systems
    Huang, Jin-wu
    Han, Xiao-ying
    Zhou, Sheng-fan
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (12) : 1597 - 1607
  • [38] Global well-posedness of the fractional Klein-Gordon-Schrodinger system with rough initial data
    Huang ChunYan
    Guo BoLing
    Huang DaiWen
    Li QiaoXin
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (07) : 1345 - 1366
  • [39] Well-posedness results for a generalized Klein-Gordon-Schrodinger system
    Pecher, Hartmut
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (10)
  • [40] Global existence and asymptotic behavior of solutions for the coupled Klein-Gordon-Schrodinger equations
    Guo, BL
    Miao, CX
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1995, 38 (12): : 1444 - 1456