Global attractor for Klein-Gordon-Schrodinger lattice system

被引:6
|
作者
Yin, Fu-qi [1 ]
Zhou, Sheng-fan
Yin, Chang-ming
Xiao, Cui-hui
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China
[3] Changsha Univ Sci & Technol, Coll Comp & Commun Engn, Changsha 410076, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
attractor; lattice dynamical system; the covering property; element decomposition; approximation;
D O I
10.1007/s10483-007-0514-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We considered the longtime behavior of solutions of a coupled lattice dynamical system of Klein-Gordon-Schrodinger equation (KGS lattice system). We first proved the existence of a global attractor for the system considered here by introducing an equivalent norm and using "End Tails" of solutions. Then we estimated the upper bound of the Kolmogorov delta-entropy of the global attractor by applying element decomposition and the covering property of a polyhedron by balls of radii delta in the finite dimensional space. Finally, we presented an approximation to the global attractor by the global attractors of finite-dimensional ordinary differential systems.
引用
收藏
页码:695 / 706
页数:12
相关论文
共 50 条