Global attractor for Klein-Gordon-Schrodinger lattice system

被引:6
|
作者
Yin, Fu-qi [1 ]
Zhou, Sheng-fan
Yin, Chang-ming
Xiao, Cui-hui
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China
[3] Changsha Univ Sci & Technol, Coll Comp & Commun Engn, Changsha 410076, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
attractor; lattice dynamical system; the covering property; element decomposition; approximation;
D O I
10.1007/s10483-007-0514-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We considered the longtime behavior of solutions of a coupled lattice dynamical system of Klein-Gordon-Schrodinger equation (KGS lattice system). We first proved the existence of a global attractor for the system considered here by introducing an equivalent norm and using "End Tails" of solutions. Then we estimated the upper bound of the Kolmogorov delta-entropy of the global attractor by applying element decomposition and the covering property of a polyhedron by balls of radii delta in the finite dimensional space. Finally, we presented an approximation to the global attractor by the global attractors of finite-dimensional ordinary differential systems.
引用
收藏
页码:695 / 706
页数:12
相关论文
共 50 条
  • [21] FINITE DIMENSIONALITY OF A KLEIN-GORDON-SCHRODINGER TYPE SYSTEM
    Poulou, Marilena N.
    Stavrakakis, Nikolaos M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2009, 2 (01): : 149 - 161
  • [22] On the radius of spatial analyticity for the Klein-Gordon-Schrodinger system
    Ahn, Jaeseop
    Kim, Jimyeong
    Seo, Ihyeok
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 321 : 449 - 474
  • [23] Global attractors for the discrete Klein-Gordon-Schrodinger type equations
    Li, Chunqiu
    Hsu, Cheng Hsiung
    Lin, Jian Jhong
    Zhao, Caidi
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2014, 20 (10) : 1404 - 1426
  • [24] Spatially singular solutions for Klein-Gordon-Schrodinger system
    Shi, Qihong
    Jia, Yaqian
    Cao, Jianxiong
    APPLIED MATHEMATICS LETTERS, 2022, 131
  • [25] Stability of standing waves for the Klein-Gordon-Schrodinger system
    Kikuchi, Hiroaki
    Ohta, Masahito
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) : 109 - 114
  • [26] Global attractors for the Klein-Gordon-Schrodinger equation in unbounded domains
    Lu, KN
    Wang, BX
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 170 (02) : 281 - 316
  • [27] ON THE GLOBAL STRONG SOLUTIONS OF COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS
    HAYASHI, N
    VONWAHL, W
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1987, 39 (03) : 489 - 497
  • [28] Attractors for the Klein-Gordon-Schrodinger equation
    Wang, B
    Lange, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) : 2445 - 2457
  • [29] Global attractor for Klein-Gordon-Schrödinger lattice system
    Fu-qi Yin
    Sheng-fan Zhou
    Chang-ming Yin
    Cui-hui Xiao
    Applied Mathematics and Mechanics, 2007, 28 : 695 - 706
  • [30] GLOBAL WELL-POSEDNESS FOR THE KLEIN-GORDON-SCHRODINGER SYSTEM WITH HIGHER ORDER COUPLING
    Soenjaya, Agus Leonardi
    MATHEMATICA BOHEMICA, 2021, : 461 - 470