Elementary characterizations of generalized weighted Morrey-Campanato spaces

被引:5
|
作者
Yang Da-chun [1 ]
Yang Si-bei [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Morrey-Campanato space; Lipschitz space; weight; TRIEBEL-LIZORKIN SPACES; BESOV-LIPSCHITZ;
D O I
10.1007/s11766-010-2380-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let alpha is an element of (0, infinity), p, q is an element of [1, infinity), s be a nonnegative integer, and omega is an element of A(1)(R-n ) (the class of Muckenhoupt's weights). In this paper, we introduce the generalized weighted Morrey-Campanato space L(alpha, p, q, s, omega; R-n ) and obtain its equivalence on different p is an element of [1, beta) and integers s >= left perpenticular n alpha right perpendicular (the integer part of n alpha), where beta = (1/q - alpha)(-1) when alpha < 1/q or beta = infinity when alpha >= 1/q. We then introduce the generalized weighted Lipschitz space boolean AND(alpha, q, omega; R-n ) and prove that L(alpha, p, q, s, omega; R-n ) subset of boolean AND (alpha, q, omega; R-n ) when alpha is an element of (0, infinity), s >= left perpendicular n alpha right perpendicular, and p is an element of [1, beta).
引用
收藏
页码:162 / 176
页数:15
相关论文
共 50 条
  • [1] Elementary characterizations of generalized weighted Morrey-Campanato spaces
    Da-chun Yang
    Si-bei Yang
    Applied Mathematics-A Journal of Chinese Universities, 2010, 25 : 162 - 176
  • [2] Elementary characterizations of generalized weighted Morrey-Campanato spaces
    YANG Da-chun YANG Si-bei School of Mathematical Sciences
    Applied Mathematics:A Journal of Chinese Universities, 2010, (02) : 162 - 176
  • [3] Elementary characterizations of generalized weighted Morrey-Campanato spaces
    YANG Dachun YANG Sibei School of Mathematical Sciences Beijing Normal University Laboratory of Mathematics and Complex Systems Ministry of Education Beijing China
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2010, 25 (02) : 162 - 176
  • [4] ELEMENTARY CHARACTERIZATIONS OF THE MORREY-CAMPANATO SPACES
    JANSON, S
    TAIBLESON, M
    WEISS, G
    LECTURE NOTES IN MATHEMATICS, 1983, 992 : 101 - 114
  • [5] Some characterizations for weighted Morrey-Campanato spaces
    Tang, Lin
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (8-9) : 1185 - 1198
  • [6] NEW CHARACTERIZATIONS OF WEIGHTED MORREY-CAMPANATO SPACES
    Yang, Dachun
    Yang, Sibei
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (01): : 141 - 163
  • [7] A characterization of the Morrey-Campanato spaces
    Deng, DG
    Duong, XT
    Yan, LX
    MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (03) : 641 - 655
  • [8] A characterization of the Morrey-Campanato spaces
    Donggao Deng
    Xuan Thinh Duong
    Lixin Yan
    Mathematische Zeitschrift, 2005, 250 : 641 - 655
  • [9] Boundedness of Operators on Weighted Morrey-Campanato Spaces in the Bessel Setting
    Hu, Wenting
    Betancor, Jorge J.
    Liu, Shenyu
    Wu, Huoxiong
    Yang, Dongyong
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (03)
  • [10] Integral operators on B σ -Morrey-Campanato spaces
    Komori-Furuya, Yasuo
    Matsuoka, Katsuo
    Nakai, Eiichi
    Sawano, Yoshihiro
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (01): : 1 - 32