Elementary characterizations of generalized weighted Morrey-Campanato spaces

被引:5
|
作者
Yang Da-chun [1 ]
Yang Si-bei [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Morrey-Campanato space; Lipschitz space; weight; TRIEBEL-LIZORKIN SPACES; BESOV-LIPSCHITZ;
D O I
10.1007/s11766-010-2380-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let alpha is an element of (0, infinity), p, q is an element of [1, infinity), s be a nonnegative integer, and omega is an element of A(1)(R-n ) (the class of Muckenhoupt's weights). In this paper, we introduce the generalized weighted Morrey-Campanato space L(alpha, p, q, s, omega; R-n ) and obtain its equivalence on different p is an element of [1, beta) and integers s >= left perpenticular n alpha right perpendicular (the integer part of n alpha), where beta = (1/q - alpha)(-1) when alpha < 1/q or beta = infinity when alpha >= 1/q. We then introduce the generalized weighted Lipschitz space boolean AND(alpha, q, omega; R-n ) and prove that L(alpha, p, q, s, omega; R-n ) subset of boolean AND (alpha, q, omega; R-n ) when alpha is an element of (0, infinity), s >= left perpendicular n alpha right perpendicular, and p is an element of [1, beta).
引用
收藏
页码:162 / 176
页数:15
相关论文
共 50 条
  • [41] The Generalized Hölder and Morrey-Campanato Dirichlet Problems for Elliptic Systems in the Upper Half-Space
    Juan José Marín
    José María Martell
    Marius Mitrea
    Potential Analysis, 2020, 53 : 947 - 976
  • [42] Hausdorff Operator on Morrey Spaces and Campanato Spaces
    Jianmiao Ruan
    Dashan Fan
    Hongliang Li
    Czechoslovak Mathematical Journal, 2020, 70 : 505 - 517
  • [43] GENERALIZED WEIGHTED MORREY SPACES ON RD-SPACES
    Chou, Jiahui
    Li, Xue
    Tong, Yan
    Lin, Haibo
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (04) : 1277 - 1293
  • [44] Boundedness of Commutators for Multilinear Marcinkiewicz Integrals with Generalized Campanato Functions on Generalized Morrey Spaces
    Ku, Fuli
    JOURNAL OF MATHEMATICAL STUDY, 2023, 56 (04) : 411 - 437
  • [45] Variable exponent Morrey and Campanato spaces
    Fan, Xianling
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (11) : 4148 - 4161
  • [46] Unicity of Navier-Stokes equation solutions in Morrey-Campanato areas
    May, Ramzi
    BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (08): : 817 - 836
  • [47] Fourier inequalities in Morrey and Campanato spaces
    Pinos, Alberto Debernardi
    Nursultanov, Erlan
    Tikhonov, Sergey
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (07)
  • [48] Characterizations for the fractional maximal operator and its commutators in generalized weighted Morrey spaces on Carnot groups
    V. S. Guliyev
    Analysis and Mathematical Physics, 2020, 10
  • [49] Characterizations for the fractional maximal operator and its commutators in generalized weighted Morrey spaces on Carnot groups
    Guliyev, V. S.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (02)
  • [50] CHARACTERIZATIONS FOR THE GENERALIZED FRACTIONAL INTEGRAL OPERATORS ON MORREY SPACES
    Eridani
    Gunawan, Hendra
    Nakai, Eiichi
    Sawano, Yoshihiro
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02): : 761 - 777