Elementary characterizations of generalized weighted Morrey-Campanato spaces

被引:5
|
作者
Yang Da-chun [1 ]
Yang Si-bei [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Morrey-Campanato space; Lipschitz space; weight; TRIEBEL-LIZORKIN SPACES; BESOV-LIPSCHITZ;
D O I
10.1007/s11766-010-2380-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let alpha is an element of (0, infinity), p, q is an element of [1, infinity), s be a nonnegative integer, and omega is an element of A(1)(R-n ) (the class of Muckenhoupt's weights). In this paper, we introduce the generalized weighted Morrey-Campanato space L(alpha, p, q, s, omega; R-n ) and obtain its equivalence on different p is an element of [1, beta) and integers s >= left perpenticular n alpha right perpendicular (the integer part of n alpha), where beta = (1/q - alpha)(-1) when alpha < 1/q or beta = infinity when alpha >= 1/q. We then introduce the generalized weighted Lipschitz space boolean AND(alpha, q, omega; R-n ) and prove that L(alpha, p, q, s, omega; R-n ) subset of boolean AND (alpha, q, omega; R-n ) when alpha is an element of (0, infinity), s >= left perpendicular n alpha right perpendicular, and p is an element of [1, beta).
引用
收藏
页码:162 / 176
页数:15
相关论文
共 50 条
  • [31] The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces
    Osipov, N. N.
    SBORNIK MATHEMATICS, 2014, 205 (07) : 1004 - 1023
  • [32] On the Commutators of Marcinkiewicz Integral with a Function in Generalized Campanato Spaces on Generalized Morrey Spaces
    Ku, Fuli
    Wu, Huoxiong
    MATHEMATICS, 2022, 10 (11)
  • [33] New function classes of Morrey-Campanato type and their applications
    Wang, Dinghuai
    Shu, Lisheng
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (03)
  • [34] Boundedness of Operators on Weighted Morrey–Campanato Spaces in the Bessel Setting
    Wenting Hu
    Jorge J. Betancor
    Shenyu Liu
    Huoxiong Wu
    Dongyong Yang
    The Journal of Geometric Analysis, 2024, 34
  • [35] The Generalized Holder and Morrey-Campanato Dirichlet Problems for Elliptic Systems in the Upper Half-Space
    Marin, Juan Jose
    Martell, Jose Maria
    Mitrea, Marius
    POTENTIAL ANALYSIS, 2020, 53 (03) : 947 - 976
  • [36] The Navier-Stokes equations in the critical Morrey-Campanato space
    Lemarie-Rieusset, Pierre Gilles
    REVISTA MATEMATICA IBEROAMERICANA, 2007, 23 (03) : 897 - 930
  • [37] Morrey-Campanato estimates for Helmholtz equations with two unbounded media
    Fouassier, E
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 : 767 - 776
  • [38] On generalized fractional integrals on the weak Orlicz spaces, BMOφ, the Morrey spaces and the Campanato spaces
    Nakai, D
    FUNCTION SPACES, INTERPOLATION THEORY AND RELATED TOPICS, PROCEEDINGS, 2002, : 389 - 401
  • [39] Boundedness of Lusin-area and gλ* functions on localized Morrey-Campanato spaces over doubling metric measure spaces
    Lin, Haibo
    Nakai, Eiichi
    Yang, Dachun
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2011, 9 (03): : 245 - 282
  • [40] Hausdorff Operator on Morrey Spaces and Campanato Spaces
    Ruan, Jianmiao
    Fan, Dashan
    Li, Hongliang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (02) : 505 - 517