NEW CHARACTERIZATIONS OF WEIGHTED MORREY-CAMPANATO SPACES

被引:5
|
作者
Yang, Dachun [1 ]
Yang, Sibei [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2011年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Weighted Morrey-Campanato space; Weighted Lipschitz space; Weight; TRIEBEL-LIZORKIN SPACES; BESOV-LIPSCHITZ;
D O I
10.11650/twjm/1500406166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha is an element of (0, infinity), q is an element of [1, infinity], s be a nonnegative integer, omega is an element of A(1)(R-n) (the class of Muckenhoupt's weights). In this paper, the authors introduce the weighted Morrey-Campanato space L(alpha, q, s, omega; R-n) and obtain its equivalence on different q is an element of [1, infinity] and integers s >= left perpendicularn alpha right perpendicular (the integer part of n alpha). The authors then introduce the weighted Lipschitz space Lambda(alpha, omega; R-n) and prove that Lambda(alpha, omega; R-n) = L(alpha, q, s, omega; R-n) when alpha is an element of (0, infinity), s >= left perpendicularn alpha right perpendicular and q is an element of [1, infinity]. Using this, the authors further establish a new characterization of L(alpha, q, s, omega; R-n) by using the convolution phi t(B) * f to replace the minimizing polynomial P(B)(s)f on any ball B of a function f in its norm when alpha is an element of (0, infinity), s >= left perpendicularn alpha right perpendicular, omega is an element of A(1) (R-n) boolean AND RH1+1/alpha(R-n) and q is an element of [1, infinity], where phi is an appropriate Schwartz function, t(B) denotes the radius of the ball B and phi t(B)(.) equivalent to t(B)(-n)phi(t(B)(-1)).
引用
收藏
页码:141 / 163
页数:23
相关论文
共 50 条
  • [1] Some characterizations for weighted Morrey-Campanato spaces
    Tang, Lin
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (8-9) : 1185 - 1198
  • [2] Elementary characterizations of generalized weighted Morrey-Campanato spaces
    Da-chun Yang
    Si-bei Yang
    Applied Mathematics-A Journal of Chinese Universities, 2010, 25 : 162 - 176
  • [3] Elementary characterizations of generalized weighted Morrey-Campanato spaces
    YANG Da-chun YANG Si-bei School of Mathematical Sciences
    Applied Mathematics:A Journal of Chinese Universities, 2010, (02) : 162 - 176
  • [4] Elementary characterizations of generalized weighted Morrey-Campanato spaces
    YANG Dachun YANG Sibei School of Mathematical Sciences Beijing Normal University Laboratory of Mathematics and Complex Systems Ministry of Education Beijing China
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2010, 25 (02) : 162 - 176
  • [5] Elementary characterizations of generalized weighted Morrey-Campanato spaces
    Yang Da-chun
    Yang Si-bei
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2010, 25 (02) : 162 - 176
  • [6] ELEMENTARY CHARACTERIZATIONS OF THE MORREY-CAMPANATO SPACES
    JANSON, S
    TAIBLESON, M
    WEISS, G
    LECTURE NOTES IN MATHEMATICS, 1983, 992 : 101 - 114
  • [7] A characterization of the Morrey-Campanato spaces
    Deng, DG
    Duong, XT
    Yan, LX
    MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (03) : 641 - 655
  • [8] A characterization of the Morrey-Campanato spaces
    Donggao Deng
    Xuan Thinh Duong
    Lixin Yan
    Mathematische Zeitschrift, 2005, 250 : 641 - 655
  • [9] Boundedness of Operators on Weighted Morrey-Campanato Spaces in the Bessel Setting
    Hu, Wenting
    Betancor, Jorge J.
    Liu, Shenyu
    Wu, Huoxiong
    Yang, Dongyong
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (03)
  • [10] Integral operators on B σ -Morrey-Campanato spaces
    Komori-Furuya, Yasuo
    Matsuoka, Katsuo
    Nakai, Eiichi
    Sawano, Yoshihiro
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (01): : 1 - 32