NEW CHARACTERIZATIONS OF WEIGHTED MORREY-CAMPANATO SPACES

被引:5
|
作者
Yang, Dachun [1 ]
Yang, Sibei [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2011年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Weighted Morrey-Campanato space; Weighted Lipschitz space; Weight; TRIEBEL-LIZORKIN SPACES; BESOV-LIPSCHITZ;
D O I
10.11650/twjm/1500406166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha is an element of (0, infinity), q is an element of [1, infinity], s be a nonnegative integer, omega is an element of A(1)(R-n) (the class of Muckenhoupt's weights). In this paper, the authors introduce the weighted Morrey-Campanato space L(alpha, q, s, omega; R-n) and obtain its equivalence on different q is an element of [1, infinity] and integers s >= left perpendicularn alpha right perpendicular (the integer part of n alpha). The authors then introduce the weighted Lipschitz space Lambda(alpha, omega; R-n) and prove that Lambda(alpha, omega; R-n) = L(alpha, q, s, omega; R-n) when alpha is an element of (0, infinity), s >= left perpendicularn alpha right perpendicular and q is an element of [1, infinity]. Using this, the authors further establish a new characterization of L(alpha, q, s, omega; R-n) by using the convolution phi t(B) * f to replace the minimizing polynomial P(B)(s)f on any ball B of a function f in its norm when alpha is an element of (0, infinity), s >= left perpendicularn alpha right perpendicular, omega is an element of A(1) (R-n) boolean AND RH1+1/alpha(R-n) and q is an element of [1, infinity], where phi is an appropriate Schwartz function, t(B) denotes the radius of the ball B and phi t(B)(.) equivalent to t(B)(-n)phi(t(B)(-1)).
引用
收藏
页码:141 / 163
页数:23
相关论文
共 50 条
  • [31] Strichartz inequalities with weights in Morrey-Campanato classes
    J. A. Barceló
    J. M. Bennett
    A. Carbery
    A. Ruiz
    M. C. Vilela
    Collectanea mathematica, 2010, 61 : 49 - 56
  • [32] The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces
    Osipov, N. N.
    SBORNIK MATHEMATICS, 2014, 205 (07) : 1004 - 1023
  • [33] Boundedness of Operators on Weighted Morrey–Campanato Spaces in the Bessel Setting
    Wenting Hu
    Jorge J. Betancor
    Shenyu Liu
    Huoxiong Wu
    Dongyong Yang
    The Journal of Geometric Analysis, 2024, 34
  • [34] The Navier-Stokes equations in the critical Morrey-Campanato space
    Lemarie-Rieusset, Pierre Gilles
    REVISTA MATEMATICA IBEROAMERICANA, 2007, 23 (03) : 897 - 930
  • [35] Morrey-Campanato estimates for Helmholtz equations with two unbounded media
    Fouassier, E
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 : 767 - 776
  • [36] Boundedness of Lusin-area and gλ* functions on localized Morrey-Campanato spaces over doubling metric measure spaces
    Lin, Haibo
    Nakai, Eiichi
    Yang, Dachun
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2011, 9 (03): : 245 - 282
  • [37] Hausdorff Operator on Morrey Spaces and Campanato Spaces
    Ruan, Jianmiao
    Fan, Dashan
    Li, Hongliang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (02) : 505 - 517
  • [38] Hausdorff Operator on Morrey Spaces and Campanato Spaces
    Jianmiao Ruan
    Dashan Fan
    Hongliang Li
    Czechoslovak Mathematical Journal, 2020, 70 : 505 - 517
  • [39] Variable exponent Morrey and Campanato spaces
    Fan, Xianling
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (11) : 4148 - 4161
  • [40] Unicity of Navier-Stokes equation solutions in Morrey-Campanato areas
    May, Ramzi
    BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (08): : 817 - 836