NEW CHARACTERIZATIONS OF WEIGHTED MORREY-CAMPANATO SPACES

被引:5
|
作者
Yang, Dachun [1 ]
Yang, Sibei [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2011年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Weighted Morrey-Campanato space; Weighted Lipschitz space; Weight; TRIEBEL-LIZORKIN SPACES; BESOV-LIPSCHITZ;
D O I
10.11650/twjm/1500406166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha is an element of (0, infinity), q is an element of [1, infinity], s be a nonnegative integer, omega is an element of A(1)(R-n) (the class of Muckenhoupt's weights). In this paper, the authors introduce the weighted Morrey-Campanato space L(alpha, q, s, omega; R-n) and obtain its equivalence on different q is an element of [1, infinity] and integers s >= left perpendicularn alpha right perpendicular (the integer part of n alpha). The authors then introduce the weighted Lipschitz space Lambda(alpha, omega; R-n) and prove that Lambda(alpha, omega; R-n) = L(alpha, q, s, omega; R-n) when alpha is an element of (0, infinity), s >= left perpendicularn alpha right perpendicular and q is an element of [1, infinity]. Using this, the authors further establish a new characterization of L(alpha, q, s, omega; R-n) by using the convolution phi t(B) * f to replace the minimizing polynomial P(B)(s)f on any ball B of a function f in its norm when alpha is an element of (0, infinity), s >= left perpendicularn alpha right perpendicular, omega is an element of A(1) (R-n) boolean AND RH1+1/alpha(R-n) and q is an element of [1, infinity], where phi is an appropriate Schwartz function, t(B) denotes the radius of the ball B and phi t(B)(.) equivalent to t(B)(-n)phi(t(B)(-1)).
引用
收藏
页码:141 / 163
页数:23
相关论文
共 50 条
  • [41] Fourier inequalities in Morrey and Campanato spaces
    Pinos, Alberto Debernardi
    Nursultanov, Erlan
    Tikhonov, Sergey
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (07)
  • [42] Local Morrey and Campanato Spaces on Quasimetric Measure Spaces
    Stempak, Krzysztof
    Tao, Xiangxing
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [43] The Campanato, Morrey and Holder spaces on spaces of homogeneous type
    Nakai, Eiichi
    STUDIA MATHEMATICA, 2006, 176 (01) : 1 - 19
  • [44] Note on the weak-strong uniqueness criterion for the β-QG in Morrey-Campanato space
    Gala, Saddek
    Ragusa, Maria Alessandra
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 : 65 - 71
  • [45] Non-trapping magnetic fields and Morrey-Campanato estimates for Schrodinger operators
    Fanelli, Luca
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) : 1 - 14
  • [46] Regularity Criteria of the 3D Boussinesq Equations in the Morrey-Campanato Space
    Fuyi Xu
    Qian Zhang
    Xiaoxin Zheng
    Acta Applicandae Mathematicae, 2012, 121 : 231 - 240
  • [47] Morrey-Campanato空间的John-Strmberg特征(英文)
    李文明
    张婷婷
    冯文莉
    数学进展, 2015, 44 (01) : 66 - 72
  • [48] Regularity Criteria of the 3D Boussinesq Equations in the Morrey-Campanato Space
    Xu, Fuyi
    Zhang, Qian
    Zheng, Xiaoxin
    ACTA APPLICANDAE MATHEMATICAE, 2012, 121 (01) : 231 - 240
  • [49] Campanato–Morrey spaces for the double phase functionals
    Yoshihiro Mizuta
    Eiichi Nakai
    Takao Ohno
    Tetsu Shimomura
    Revista Matemática Complutense, 2020, 33 : 817 - 834
  • [50] Regularity criteria for the 3D tropical climate model in Morrey-Campanato space
    Wu, Fan
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (48) : 1 - 11