Boundedness of Operators on Weighted Morrey-Campanato Spaces in the Bessel Setting

被引:0
|
作者
Hu, Wenting [1 ]
Betancor, Jorge J. [2 ]
Liu, Shenyu [3 ]
Wu, Huoxiong [3 ]
Yang, Dongyong [3 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Univ La Laguna, Dept Anaisis Matema, Campus Anchieta,Avda Astrofis Francisco Sanchez S-, San Cristobal la Laguna 38271, Santa Cruz De T, Spain
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
Bessel Schrodinger operator; Oscillation; Variation; Maximal operator; Weighted Morrey-Campanato space; L-P; DIFFERENTIAL TRANSFORMS; ADMISSIBLE FUNCTIONS; POISSON INTEGRALS; RIESZ TRANSFORMS; RD-SPACES; BMO; OSCILLATION; SEMIGROUPS; INEQUALITIES;
D O I
10.1007/s12220-023-01510-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda is an element of(-12,infinity), and{W lambda t}t>0be the heat semigroup related to the BesselSchr & ouml;dinger operatorS lambda:= -d2dx2+lambda 2-lambda x2onR+:=(0,infinity). The authors intro-duce the weighted Morrey-Campanato space BMO alpha(R+,omega)with alpha is an element of[0,1)and omega is an element of A infinity(R+), and show that for any weight function omega is an element of RHs '(R+)boolean AND Ap/s(R+),the oscillation, variation, radial maximal operator, and maximal operator of differenceassociated with the family{tm partial derivative mtW lambda t}t>0are bounded from BMO alpha(R+,omega)to its sub-space BLO alpha(R+,omega), where lambda is an element of R+,m is an element of N boolean OR{0},p is an element of(1,infinity),s is an element of[1,p)such thatp/s+alpha<1+min{1,lambda}, ands ' denotes the conjugate exponent ofs. These resultsare new even in the case of omega equivalent to 1. As a corollary, the boundedness of these operatorson spaces BMO alpha(R+,omega)is further established
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Boundedness of Operators on Weighted Morrey–Campanato Spaces in the Bessel Setting
    Wenting Hu
    Jorge J. Betancor
    Shenyu Liu
    Huoxiong Wu
    Dongyong Yang
    [J]. The Journal of Geometric Analysis, 2024, 34
  • [2] Preduals of variable Morrey-Campanato spaces and boundedness of operators
    Zhuo, Ciqiang
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2023, 14 (04)
  • [3] Integral operators on B σ -Morrey-Campanato spaces
    Komori-Furuya, Yasuo
    Matsuoka, Katsuo
    Nakai, Eiichi
    Sawano, Yoshihiro
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (01): : 1 - 32
  • [4] Some characterizations for weighted Morrey-Campanato spaces
    Tang, Lin
    [J]. MATHEMATISCHE NACHRICHTEN, 2011, 284 (8-9) : 1185 - 1198
  • [5] NEW CHARACTERIZATIONS OF WEIGHTED MORREY-CAMPANATO SPACES
    Yang, Dachun
    Yang, Sibei
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (01): : 141 - 163
  • [6] Integral operators on Bσ-Morrey-Campanato spaces
    Yasuo Komori-Furuya
    Katsuo Matsuoka
    Eiichi Nakai
    Yoshihiro Sawano
    [J]. Revista Matemática Complutense, 2013, 26 : 1 - 32
  • [7] VARIATION AND OSCILLATION OPERATORS ON WEIGHTED MORREY-CAMPANATO SPACES IN THE SCHRO<spacing diaeresis>DINGER SETTING
    Almeida, Victor
    Betancor, Jorge j.
    Farina, Juan c.
    Rodriguez-mesa, Lourdes
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2023, 66 (01): : 1 - 34
  • [8] Elementary characterizations of generalized weighted Morrey-Campanato spaces
    Da-chun Yang
    Si-bei Yang
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2010, 25 : 162 - 176
  • [9] Elementary characterizations of generalized weighted Morrey-Campanato spaces
    YANG Da-chun YANG Si-bei School of Mathematical Sciences
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2010, (02) : 162 - 176
  • [10] Elementary characterizations of generalized weighted Morrey-Campanato spaces
    YANG Dachun YANG Sibei School of Mathematical Sciences Beijing Normal University Laboratory of Mathematics and Complex Systems Ministry of Education Beijing China
    [J]. Applied Mathematics:A Journal of Chinese Universities(Series B)., 2010, 25 (02) - 176