Boundedness of Operators on Weighted Morrey-Campanato Spaces in the Bessel Setting

被引:0
|
作者
Hu, Wenting [1 ]
Betancor, Jorge J. [2 ]
Liu, Shenyu [3 ]
Wu, Huoxiong [3 ]
Yang, Dongyong [3 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Univ La Laguna, Dept Anaisis Matema, Campus Anchieta,Avda Astrofis Francisco Sanchez S-, San Cristobal la Laguna 38271, Santa Cruz De T, Spain
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
Bessel Schrodinger operator; Oscillation; Variation; Maximal operator; Weighted Morrey-Campanato space; L-P; DIFFERENTIAL TRANSFORMS; ADMISSIBLE FUNCTIONS; POISSON INTEGRALS; RIESZ TRANSFORMS; RD-SPACES; BMO; OSCILLATION; SEMIGROUPS; INEQUALITIES;
D O I
10.1007/s12220-023-01510-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let lambda is an element of(-12,infinity), and{W lambda t}t>0be the heat semigroup related to the BesselSchr & ouml;dinger operatorS lambda:= -d2dx2+lambda 2-lambda x2onR+:=(0,infinity). The authors intro-duce the weighted Morrey-Campanato space BMO alpha(R+,omega)with alpha is an element of[0,1)and omega is an element of A infinity(R+), and show that for any weight function omega is an element of RHs '(R+)boolean AND Ap/s(R+),the oscillation, variation, radial maximal operator, and maximal operator of differenceassociated with the family{tm partial derivative mtW lambda t}t>0are bounded from BMO alpha(R+,omega)to its sub-space BLO alpha(R+,omega), where lambda is an element of R+,m is an element of N boolean OR{0},p is an element of(1,infinity),s is an element of[1,p)such thatp/s+alpha<1+min{1,lambda}, ands ' denotes the conjugate exponent ofs. These resultsare new even in the case of omega equivalent to 1. As a corollary, the boundedness of these operatorson spaces BMO alpha(R+,omega)is further established
引用
收藏
页数:40
相关论文
共 50 条
  • [41] Remez type inequalities and Morrey-Campanato spaces on Ahlfors regular sets
    Brudnyi, Alexander
    Brudnyi, Yuri
    [J]. INTERPOLATION THEORY AND APPLICATIONS, 2007, 445 : 19 - +
  • [42] Boundedness and compactness characterizations of Riesz transform commutators on Morrey spaces in the Bessel setting
    Mao, Suzhen
    Wu, Huoxiong
    Yang, Dongyong
    [J]. ANALYSIS AND APPLICATIONS, 2019, 17 (01) : 145 - 178
  • [43] Boundedness of Operators on Certain Weighted Morrey Spaces Beyond the Muckenhoupt Range
    Duoandikoetxea, Javier
    Rosenthal, Marcel
    [J]. POTENTIAL ANALYSIS, 2020, 53 (04) : 1255 - 1268
  • [44] Boundedness of sublinear operators on weighted grand Herz-Morrey spaces
    Zhang, Wanjing
    He, Suixin
    Zhang, Jing
    [J]. AIMS MATHEMATICS, 2023, 8 (08): : 17381 - 17401
  • [45] Boundedness of Operators on Certain Weighted Morrey Spaces Beyond the Muckenhoupt Range
    Javier Duoandikoetxea
    Marcel Rosenthal
    [J]. Potential Analysis, 2020, 53 : 1255 - 1268
  • [46] Boundedness of composition operators on Morrey spaces and weak Morrey spaces
    Naoya Hatano
    Masahiro Ikeda
    Isao Ishikawa
    Yoshihiro Sawano
    [J]. Journal of Inequalities and Applications, 2021
  • [47] Boundedness of composition operators on Morrey spaces and weak Morrey spaces
    Hatano, Naoya
    Ikeda, Masahiro
    Ishikawa, Isao
    Sawano, Yoshihiro
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [48] Strichartz inequalities with weights in Morrey-Campanato classes
    J. A. Barceló
    J. M. Bennett
    A. Carbery
    A. Ruiz
    M. C. Vilela
    [J]. Collectanea mathematica, 2010, 61 : 49 - 56
  • [49] Strichartz inequalities with weights in Morrey-Campanato classes
    Barcelo, J. A.
    Bennett, J. M.
    Carbery, A.
    Ruiz, A.
    Vilela, M. C.
    [J]. COLLECTANEA MATHEMATICA, 2010, 61 (01) : 49 - 56
  • [50] Non-trapping magnetic fields and Morrey-Campanato estimates for Schrodinger operators
    Fanelli, Luca
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) : 1 - 14