Symmetries of the nonlinear Schrodinger equation

被引:8
|
作者
Grébert, B
Kappeler, T
机构
[1] Univ Nantes, CNRS, UMR 6629, Dept Math, F-44322 Nantes 03, France
[2] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
来源
关键词
NLS equation; Zakharov-Shabat operators; action-angle variables; symmetries;
D O I
10.24033/bsmf.2432
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Symmetries of the defocusing nonlinear Schrodinger equation are expressed in action-angle coordinates and characterized in terms of the periodic and Dirichlet spectrum of the associated Zakharov-Shabat system. Application: proof of the conjecture that the periodic spectrum... <lambda(k)(-) less than or equal to lambda(k)(+) < lambda(k+1)(-) less than or equal to ... of a Zakharov-Shabat operator is symmetric, i.e. lambda(k)(+/-) = -lambda(-k)(-/+) for all k, if and only if the sequence (gamma(k))(kis an element ofZ) of gap lengths, gamma(k) := lambda(k)(+) - lambda(k)(-), is symmetric with respect to k = 0.
引用
收藏
页码:603 / 618
页数:16
相关论文
共 50 条
  • [41] Disentanglement and a nonlinear Schrodinger equation
    Buks, Eyal
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (35)
  • [42] The nonlinear Schrodinger equation on the interval
    Fokas, AS
    Its, AR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (23): : 6091 - 6114
  • [43] Schrodinger equation with a nonlinear correction
    Yao, QK
    Jia, Y
    Wei, YN
    Ma, BX
    Li, XJ
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2001, 116 (09): : 991 - 996
  • [44] ON THE NONLINEAR SCHRODINGER-EQUATION
    DATSEFF, AB
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1985, : 739 - 740
  • [45] Derivation of Nonlinear Schrodinger Equation
    Wu, Xiang-Yao
    Zhang, Bai-Jun
    Liu, Xiao-Jing
    Xiao, Li
    Wu, Yi-Heng
    Wang, Yan
    Wang, Qing-Cai
    Cheng, Shuang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (10) : 2437 - 2445
  • [46] A stochastic nonlinear Schrodinger equation
    Debussche, A
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 292 - 295
  • [47] Eigenvalues of the nonlinear Schrodinger equation
    Geltman, S.
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (09):
  • [48] Solving the nonlinear Schrodinger equation
    Forestieri, E
    Secondini, M
    OPTICAL COMMUNICATION THEORY AND TECHNIQUES, 2005, : 3 - +
  • [49] Symmetries of the Schrodinger-Pauli equation for neutral particles
    Nikitin, A. G.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (08)
  • [50] On the forced nonlinear Schrodinger equation
    Shull, R
    Bu, C
    Wang, HF
    Chu, ML
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 626 - 630