Symmetries of the nonlinear Schrodinger equation

被引:8
|
作者
Grébert, B
Kappeler, T
机构
[1] Univ Nantes, CNRS, UMR 6629, Dept Math, F-44322 Nantes 03, France
[2] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
来源
关键词
NLS equation; Zakharov-Shabat operators; action-angle variables; symmetries;
D O I
10.24033/bsmf.2432
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Symmetries of the defocusing nonlinear Schrodinger equation are expressed in action-angle coordinates and characterized in terms of the periodic and Dirichlet spectrum of the associated Zakharov-Shabat system. Application: proof of the conjecture that the periodic spectrum... <lambda(k)(-) less than or equal to lambda(k)(+) < lambda(k+1)(-) less than or equal to ... of a Zakharov-Shabat operator is symmetric, i.e. lambda(k)(+/-) = -lambda(-k)(-/+) for all k, if and only if the sequence (gamma(k))(kis an element ofZ) of gap lengths, gamma(k) := lambda(k)(+) - lambda(k)(-), is symmetric with respect to k = 0.
引用
收藏
页码:603 / 618
页数:16
相关论文
共 50 条