Symmetries of the nonlinear Schrodinger equation

被引:8
|
作者
Grébert, B
Kappeler, T
机构
[1] Univ Nantes, CNRS, UMR 6629, Dept Math, F-44322 Nantes 03, France
[2] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
来源
关键词
NLS equation; Zakharov-Shabat operators; action-angle variables; symmetries;
D O I
10.24033/bsmf.2432
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Symmetries of the defocusing nonlinear Schrodinger equation are expressed in action-angle coordinates and characterized in terms of the periodic and Dirichlet spectrum of the associated Zakharov-Shabat system. Application: proof of the conjecture that the periodic spectrum... <lambda(k)(-) less than or equal to lambda(k)(+) < lambda(k+1)(-) less than or equal to ... of a Zakharov-Shabat operator is symmetric, i.e. lambda(k)(+/-) = -lambda(-k)(-/+) for all k, if and only if the sequence (gamma(k))(kis an element ofZ) of gap lengths, gamma(k) := lambda(k)(+) - lambda(k)(-), is symmetric with respect to k = 0.
引用
收藏
页码:603 / 618
页数:16
相关论文
共 50 条
  • [31] Multifrequency nonlinear Schrodinger equation
    Castello-Lurbe, David
    Silvestre, Enrique
    Andres, Miguel V.
    OPTICS LETTERS, 2024, 49 (16) : 4713 - 4716
  • [32] KAM for the nonlinear Schrodinger equation
    Eliasson, L. Hakan
    Kuksin, Sergei B.
    ANNALS OF MATHEMATICS, 2010, 172 (01) : 371 - 435
  • [33] On Nonlinear Equation of Schrodinger type
    Soltanov, Kamal N.
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 923 - 932
  • [35] Collapse in the nonlinear Schrodinger equation
    Ovchinnikov, YN
    Sigal, IM
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 89 (01) : 35 - 40
  • [36] On the solution of the nonlinear Schrodinger equation
    Zayed, EME
    Zedan, HA
    CHAOS SOLITONS & FRACTALS, 2003, 16 (01) : 133 - 145
  • [37] Chiral nonlinear Schrodinger equation
    Nishino, A
    Umeno, Y
    Wadati, M
    CHAOS SOLITONS & FRACTALS, 1998, 9 (07) : 1063 - 1069
  • [38] Nonlinear Schrodinger Equation with Singularities
    Dugandzija, Nevena
    Vojnovic, Ivana
    QUALITATIVE PROPERTIES OF DISPERSIVE PDES, 2022, 52 : 91 - 107
  • [39] The nonlinear Schrodinger equation with a potential
    Germain, Pierre
    Pusateri, Fabio
    Rousset, Frederic
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (06): : 1477 - 1530
  • [40] SOLVING NONLINEAR SCHRODINGER EQUATION
    Bayramova, Nigar
    PROCEEDINGS OF THE7TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL II, 2020, : 119 - 121