Symmetries of the nonlinear Schrodinger equation

被引:8
|
作者
Grébert, B
Kappeler, T
机构
[1] Univ Nantes, CNRS, UMR 6629, Dept Math, F-44322 Nantes 03, France
[2] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
来源
关键词
NLS equation; Zakharov-Shabat operators; action-angle variables; symmetries;
D O I
10.24033/bsmf.2432
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Symmetries of the defocusing nonlinear Schrodinger equation are expressed in action-angle coordinates and characterized in terms of the periodic and Dirichlet spectrum of the associated Zakharov-Shabat system. Application: proof of the conjecture that the periodic spectrum... <lambda(k)(-) less than or equal to lambda(k)(+) < lambda(k+1)(-) less than or equal to ... of a Zakharov-Shabat operator is symmetric, i.e. lambda(k)(+/-) = -lambda(-k)(-/+) for all k, if and only if the sequence (gamma(k))(kis an element ofZ) of gap lengths, gamma(k) := lambda(k)(+) - lambda(k)(-), is symmetric with respect to k = 0.
引用
收藏
页码:603 / 618
页数:16
相关论文
共 50 条
  • [21] Symmetries of the Schrodinger equation and algebra/superalgebra duality
    Toppan, Francesco
    XXXTH INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (ICGTMP) (GROUP30), 2015, 597
  • [22] Global Lie Symmetries of the Heat and Schrodinger Equation
    Sepanski, Mark R.
    Stanke, Ronald J.
    JOURNAL OF LIE THEORY, 2010, 20 (03) : 543 - 580
  • [23] Nonlinear Schrodinger-Helmholtz equation as numerical regularization of the nonlinear Schrodinger equation
    Cao, Yanping
    Musslimani, Ziad H.
    Titi, Edriss S.
    NONLINEARITY, 2008, 21 (05) : 879 - 898
  • [24] Higher Spin Symmetries of the Free Schrodinger Equation
    Valenzuela, Mauricio
    ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
  • [25] Symmetries of Schrodinger equation with scalar and vector potentials
    Nikitin, A. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (45)
  • [26] FORMAL SERIES SYMMETRIES AND TRUNCATED SYMMETRIES OF A BILINEAR SCHRODINGER-EQUATION
    YU, J
    LIN, J
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1995, 23 (01) : 65 - 68
  • [27] EXTENDED SYMMETRIES AND SOLUTIONS OF (2+1)-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION WITH VARIABLE COEFFICIENTS
    Wang, Jia
    Li, Biao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2009, 20 (11): : 1681 - 1696
  • [28] Exact solutions to nonlinear Schrodinger equation and higher-order nonlinear Schrodinger equation
    Ren Ji
    Ruan Hang-Yu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (03) : 575 - 578
  • [29] Solutions of a nonlinear Schrodinger equation
    deFigueiredo, DG
    Ding, YH
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2002, 8 (03) : 563 - 584
  • [30] Fractional nonlinear Schrodinger equation
    Mendez-Navarro, Jesus A.
    Naumkin, Pavel I.
    Sanchez-Suarez, Isahi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):