Randomized polya tree models for nonparametric Bayesian inference

被引:0
|
作者
Paddock, SM
Ruggeri, F
Lavine, M
West, M
机构
[1] RAND Corp, Stat Grp, Santa Monica, CA 90407 USA
[2] CNR, IATMI, I-20131 Milan, Italy
[3] Duke Univ, Durham, NC 27708 USA
关键词
Bayesian nonparametrics; Bayesian trees; partitioning; Polya tree prior; randomized Polya tree;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Like other partition-based models, Polya trees suffer the problem of partition dependence. We develop Randomized Polya Trees to address this limitation. This new framework inherits the structure of Polya trees but "jitters" partition points and as a result smooths discontinuities in predictive distributions. Some of the theoretical aspects of the new framework are developed, followed by discussion of methodological and computational issues arising in implementation. Examples of data analyses and prediction problems are provided to highlight issues of Bayesian inference in this context.
引用
收藏
页码:443 / 460
页数:18
相关论文
共 50 条
  • [21] Discussion of “Nonparametric Bayesian Inference in Applications”: Bayesian nonparametric methods in econometrics
    Jim Griffin
    Maria Kalli
    Mark Steel
    [J]. Statistical Methods & Applications, 2018, 27 : 207 - 218
  • [22] Discussion of "Nonparametric Bayesian Inference in Applications": Bayesian nonparametric methods in econometrics
    Griffin, Jim
    Kalli, Maria
    Steel, Mark
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02): : 207 - 218
  • [23] Bayesian nonparametric generative models for causal inference with missing at random covariates
    Roy, Jason
    Lum, Kirsten J.
    Zeldow, Bret
    Dworkin, Jordan D.
    Re, Vincent Lo
    Daniels, Michael J.
    [J]. BIOMETRICS, 2018, 74 (04) : 1193 - 1202
  • [24] Nonparametric learning from Bayesian models with randomized objective functions
    Lyddon, Simon
    Walker, Stephen
    Holmes, Chris
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [25] Bayesian Nonparametric Modeling for Causal Inference
    Hill, Jennifer L.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (01) : 217 - 240
  • [26] BAYESIAN NONPARAMETRIC INFERENCE ON THE STIEFEL MANIFOLD
    Lin, Lizhen
    Rao, Vinayak
    Dunson, David
    [J]. STATISTICA SINICA, 2017, 27 (02) : 535 - 553
  • [27] Bayesian Nonparametric Inference for the Power Likelihood
    Antoniano-Villalobos, Isadora
    Walker, Stephen G.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (04) : 801 - 813
  • [28] More nonparametric Bayesian inference in applications
    Guindani, Michele
    Johnson, Wesley O.
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02): : 239 - 251
  • [29] Nonparametric Bayesian inference in nuclear spectrometry
    Barat, Eric
    Dautremer, Thomas
    Montagu, Thierry
    [J]. 2007 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-11, 2007, : 880 - 887
  • [30] Bayesian parametric inference in a nonparametric framework
    Stephen G. Walker
    Eduardo Gutiérrez-Peña
    [J]. TEST, 2007, 16 : 188 - 197