Bayesian Nonparametric Inference for the Power Likelihood

被引:4
|
作者
Antoniano-Villalobos, Isadora [1 ]
Walker, Stephen G. [2 ]
机构
[1] Bocconi Univ, Dept Decis Sci, I-20136 Milan, Italy
[2] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NZ, Kent, England
关键词
Consistency; Latent model; MCMC; Mixture of Dirichlet process model; SAMPLING METHODS; DISTRIBUTIONS; CONSISTENCY;
D O I
10.1080/10618600.2012.728511
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim in this article is to provide a means to undertake Bayesian inference for mixture models when the likelihood function is raised to a power between 0 and 1. The main purpose for doing this is to guarantee a strongly consistent model and hence, make it possible to compare the consistent posterior with the correct posterior, looking for signs of discrepancy. This will be explained in detail in the article. Another purpose would be for simulated annealing algorithms. In particular, for the widely used mixture of Dirichlet process model, it is far from obvious how to undertake inference via Markov chain Monte Carlo methods when the likelihood is raised to a power other than 1. In this article, we demonstrate how posterior sampling can be carried out when using a power likelihood. Mat lab code to implement the algorithm is available as supplementary material.
引用
收藏
页码:801 / 813
页数:13
相关论文
共 50 条
  • [1] Nonparametric Bayesian inference in applications
    Peter Müeller
    Fernando A. Quintana
    Garritt Page
    [J]. Statistical Methods & Applications, 2018, 27 : 175 - 206
  • [2] Nonparametric applications of Bayesian inference
    Chamberlain, G
    Imbens, GW
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2003, 21 (01) : 12 - 18
  • [3] Nonparametric Bayesian inference in applications
    Mueeller, Peter
    Quintana, Fernando A.
    Page, Garritt
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02): : 175 - 206
  • [4] Discussion of “Nonparametric Bayesian Inference in Applications”: Bayesian nonparametric methods in econometrics
    Jim Griffin
    Maria Kalli
    Mark Steel
    [J]. Statistical Methods & Applications, 2018, 27 : 207 - 218
  • [5] Discussion of "Nonparametric Bayesian Inference in Applications": Bayesian nonparametric methods in econometrics
    Griffin, Jim
    Kalli, Maria
    Steel, Mark
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02): : 207 - 218
  • [6] Bayesian Nonparametric Modeling for Causal Inference
    Hill, Jennifer L.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (01) : 217 - 240
  • [7] BAYESIAN NONPARAMETRIC INFERENCE ON THE STIEFEL MANIFOLD
    Lin, Lizhen
    Rao, Vinayak
    Dunson, David
    [J]. STATISTICA SINICA, 2017, 27 (02) : 535 - 553
  • [8] Bayesian nonparametric inference on stochastic ordering
    Dunson, David B.
    Peddada, Shyamal D.
    [J]. BIOMETRIKA, 2008, 95 (04) : 859 - 874
  • [9] Bayesian parametric inference in a nonparametric framework
    Walker, Stephen G.
    Gutierrez-Pena, Eduardo
    [J]. TEST, 2007, 16 (01) : 188 - 197
  • [10] Nonparametric Bayesian inference in nuclear spectrometry
    Barat, Eric
    Dautremer, Thomas
    Montagu, Thierry
    [J]. 2007 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-11, 2007, : 880 - 887