BAYESIAN NONPARAMETRIC INFERENCE ON THE STIEFEL MANIFOLD

被引:8
|
作者
Lin, Lizhen [1 ]
Rao, Vinayak [2 ]
Dunson, David [3 ]
机构
[1] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
[2] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
[3] Duke Univ, Dept Stat Sci, Durham, NC 27706 USA
基金
美国国家科学基金会;
关键词
Bayesian nonparametric; kernel mixture; matrix Langevin; orthonormal matrices; posterior consistency; Stiefel manifold; von Mises Fisher; FISHER DISTRIBUTION; DENSITY-ESTIMATION; BESSEL-FUNCTIONS; MATRIX;
D O I
10.5705/ss.202016.0017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Stiefel manifold V-p,V-d is the space of all d x p orthonormal matrices, with the d-1 hypersp here and the space of all orthogonal matrices constituting special cases. In modeling data lying on the Stiefel manifold, parametric distributions such as the matrix Langevin distribution are often used; however, model misspecification is a concern and it is desirable to have nonparametric alternatives. Current nonparametric methods are mainly Frechet-mean based. We take a fully generative nonparametric approach, which relies on mixing parametric kernels such as the matrix Langevin. The proposed kernel mixtures can approximate a large class of distributions on the Stiefel manifold, and we develop theory showing posterior consistency. While there exists work developing general posterior consistency results, extending these results to this particular manifold requires substantial new theory. Posterior inference is illustrated on a dataset of near-Earth objects.
引用
收藏
页码:535 / 553
页数:19
相关论文
共 50 条
  • [1] Bayesian Inference over the Stiefel Manifold via the Givens Representation
    Pourzanjani, Arya A.
    Jiang, Richard M.
    Mitchell, Brian
    Atzberger, Paul J.
    Petzold, Linda R.
    [J]. BAYESIAN ANALYSIS, 2021, 16 (02): : 639 - 666
  • [2] Bayesian filtering on the Stiefel manifold
    Tompkins, Frank
    Wolfe, Patrick J.
    [J]. 2007 2ND IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 2007, : 161 - 164
  • [3] Nonparametric Bayesian inference in applications
    Peter Müeller
    Fernando A. Quintana
    Garritt Page
    [J]. Statistical Methods & Applications, 2018, 27 : 175 - 206
  • [4] Nonparametric applications of Bayesian inference
    Chamberlain, G
    Imbens, GW
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2003, 21 (01) : 12 - 18
  • [5] Nonparametric Bayesian inference in applications
    Mueeller, Peter
    Quintana, Fernando A.
    Page, Garritt
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02): : 175 - 206
  • [6] Discussion of “Nonparametric Bayesian Inference in Applications”: Bayesian nonparametric methods in econometrics
    Jim Griffin
    Maria Kalli
    Mark Steel
    [J]. Statistical Methods & Applications, 2018, 27 : 207 - 218
  • [7] Discussion of "Nonparametric Bayesian Inference in Applications": Bayesian nonparametric methods in econometrics
    Griffin, Jim
    Kalli, Maria
    Steel, Mark
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02): : 207 - 218
  • [8] Bayesian Nonparametric Modeling for Causal Inference
    Hill, Jennifer L.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (01) : 217 - 240
  • [9] Bayesian Nonparametric Inference for the Power Likelihood
    Antoniano-Villalobos, Isadora
    Walker, Stephen G.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (04) : 801 - 813
  • [10] Bayesian nonparametric inference on stochastic ordering
    Dunson, David B.
    Peddada, Shyamal D.
    [J]. BIOMETRIKA, 2008, 95 (04) : 859 - 874