BAYESIAN NONPARAMETRIC INFERENCE ON THE STIEFEL MANIFOLD

被引:8
|
作者
Lin, Lizhen [1 ]
Rao, Vinayak [2 ]
Dunson, David [3 ]
机构
[1] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
[2] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
[3] Duke Univ, Dept Stat Sci, Durham, NC 27706 USA
基金
美国国家科学基金会;
关键词
Bayesian nonparametric; kernel mixture; matrix Langevin; orthonormal matrices; posterior consistency; Stiefel manifold; von Mises Fisher; FISHER DISTRIBUTION; DENSITY-ESTIMATION; BESSEL-FUNCTIONS; MATRIX;
D O I
10.5705/ss.202016.0017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Stiefel manifold V-p,V-d is the space of all d x p orthonormal matrices, with the d-1 hypersp here and the space of all orthogonal matrices constituting special cases. In modeling data lying on the Stiefel manifold, parametric distributions such as the matrix Langevin distribution are often used; however, model misspecification is a concern and it is desirable to have nonparametric alternatives. Current nonparametric methods are mainly Frechet-mean based. We take a fully generative nonparametric approach, which relies on mixing parametric kernels such as the matrix Langevin. The proposed kernel mixtures can approximate a large class of distributions on the Stiefel manifold, and we develop theory showing posterior consistency. While there exists work developing general posterior consistency results, extending these results to this particular manifold requires substantial new theory. Posterior inference is illustrated on a dataset of near-Earth objects.
引用
收藏
页码:535 / 553
页数:19
相关论文
共 50 条
  • [41] An adaptive truncation method for inference in Bayesian nonparametric models
    Griffin, J. E.
    [J]. STATISTICS AND COMPUTING, 2016, 26 (1-2) : 423 - 441
  • [42] Streaming Variational Inference for Bayesian Nonparametric Mixture Models
    Tank, Alex
    Foti, Nicholas J.
    Fox, Emily B.
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 968 - 976
  • [43] Nonparametric Bayesian inference of the microcanonical stochastic block model
    Peixoto, Tiago P.
    [J]. PHYSICAL REVIEW E, 2017, 95 (01)
  • [44] An adaptive truncation method for inference in Bayesian nonparametric models
    J. E. Griffin
    [J]. Statistics and Computing, 2016, 26 : 423 - 441
  • [45] Application of Kahler manifold to signal processing and Bayesian inference
    Choi, Jaehyung
    Mullhaupt, Andrew P.
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING (MAXENT 2014), 2015, 1641 : 113 - 120
  • [46] A nonparametric Bayesian model for inference in related longitudinal studies
    Müller, P
    Rosner, GL
    De Iorio, M
    MacEachern, S
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2005, 54 : 611 - 626
  • [47] Bayesian Nonparametric Inference of Switching Dynamic Linear Models
    Fox, Emily
    Sudderth, Erik B.
    Jordan, Michael I.
    Willsky, Alan S.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (04) : 1569 - 1585
  • [48] BAYESIAN NONPARAMETRIC-INFERENCE FOR QUANTAL RESPONSE DATA
    AMMANN, LP
    [J]. ANNALS OF STATISTICS, 1984, 12 (02): : 636 - 645
  • [49] Bayesian Nonparametric Inference Why and How Comment Rejoinder
    Mueller, Peter
    Mitra, Riten
    [J]. BAYESIAN ANALYSIS, 2013, 8 (02): : 357 - 360
  • [50] NONPARAMETRIC BAYESIAN INFERENCE ON ENVIRONMENTAL WATERS CHROMATOGRAPHIC PROFILES
    Harant, Olivier
    Foan, Louise
    Bertholon, Francois
    Vignoud, Severine
    Grangeat, Pierre
    [J]. 2015 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2015,