Randomized polya tree models for nonparametric Bayesian inference

被引:0
|
作者
Paddock, SM
Ruggeri, F
Lavine, M
West, M
机构
[1] RAND Corp, Stat Grp, Santa Monica, CA 90407 USA
[2] CNR, IATMI, I-20131 Milan, Italy
[3] Duke Univ, Durham, NC 27708 USA
关键词
Bayesian nonparametrics; Bayesian trees; partitioning; Polya tree prior; randomized Polya tree;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Like other partition-based models, Polya trees suffer the problem of partition dependence. We develop Randomized Polya Trees to address this limitation. This new framework inherits the structure of Polya trees but "jitters" partition points and as a result smooths discontinuities in predictive distributions. Some of the theoretical aspects of the new framework are developed, followed by discussion of methodological and computational issues arising in implementation. Examples of data analyses and prediction problems are provided to highlight issues of Bayesian inference in this context.
引用
收藏
页码:443 / 460
页数:18
相关论文
共 50 条
  • [11] High-dimensional Bayesian inference in nonparametric additive models
    Shang, Zuofeng
    Li, Ping
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 2804 - 2847
  • [12] Bayesian inference in nonparametric dynamic state-space models
    Ghosh, Anurag
    Mukhopadhyay, Soumalya
    Roy, Sandipan
    Bhattacharya, Sourabh
    [J]. STATISTICAL METHODOLOGY, 2014, 21 : 35 - 48
  • [13] Bayesian nonparametric inference for heterogeneously mixing infectious disease models
    Seymour, Rowland G.
    Kypraios, Theodore
    O'Neill, Philip D.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (10)
  • [14] A method for combining inference across related nonparametric Bayesian models
    Müller, P
    Quintana, F
    Rosner, G
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 735 - 749
  • [15] Bayesian Inference for Logistic Models Using Polya-Gamma Latent Variables
    Polson, Nicholas G.
    Scott, James G.
    Windle, Jesse
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (504) : 1339 - 1349
  • [16] Nonparametric Bayesian inference in applications
    Peter Müeller
    Fernando A. Quintana
    Garritt Page
    [J]. Statistical Methods & Applications, 2018, 27 : 175 - 206
  • [17] Nonparametric applications of Bayesian inference
    Chamberlain, G
    Imbens, GW
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2003, 21 (01) : 12 - 18
  • [18] Nonparametric Bayesian inference in applications
    Mueeller, Peter
    Quintana, Fernando A.
    Page, Garritt
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02): : 175 - 206
  • [19] Latent tree models and approximate inference in Bayesian networks
    Wang, Yi
    Zhang, Nevin L.
    Chen, Tao
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2008, 32 : 879 - 900
  • [20] INFERENCE IN BAYESIAN ADDITIVE VECTOR AUTOREGRESSIVE TREE MODELS
    Huber, Florian
    Rossini, Luca
    [J]. ANNALS OF APPLIED STATISTICS, 2022, 16 (01): : 104 - 123