Bayesian estimation and influence diagnostics of generalized partially linear mixed-effects models for longitudinal data

被引:4
|
作者
Duan, Xing-De [1 ,2 ]
Tang, Nian-Sheng [1 ]
机构
[1] Yunnan Univ, Dept Stat, Kunming 650091, Peoples R China
[2] Chuxiong Normal Sch, Inst Appl Stat, Chuxiong 675000, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Bayesian case deletion influence; Cook's posterior mean distance; Fisher's iterative scoring algorithm; generalized partial linear mixed models; phi-divergence; 62H12; 62F15; DELETION DIAGNOSTICS; ESTIMATING EQUATIONS; ROBUST ESTIMATION; REGRESSION; LIKELIHOOD; INFERENCE;
D O I
10.1080/02331888.2015.1078332
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops a Bayesian approach to obtain the joint estimates of unknown parameters, nonparametric functions and random effects in generalized partially linear mixed models (GPLMMs), and presents three case deletion influence measures to identify influential observations based on the phi-divergence, Cook's posterior mean distance and Cook's posterior mode distance of parameters. Fisher's iterative scoring algorithm is developed to evaluate the posterior modes of parameters in GPLMMs. The first-order approximation to Cook's posterior mode distance is presented. The computationally feasible formulae for the phi-divergence diagnostic and Cook's posterior mean distance are given. Several simulation studies and an example are presented to illustrate our proposed methodologies.
引用
收藏
页码:525 / 539
页数:15
相关论文
共 50 条
  • [21] Spline linear mixed-effects models for causal mediation analysis with longitudinal data
    Albert, Jeffrey M.
    Zhu, Hongxu
    Dey, Tanujit
    Sun, Jiayang
    Woyczynski, Wojbor A.
    Powers, Gregory
    Min, Meeyoung
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2024, 66 (03) : 347 - 366
  • [22] Bayesian analysis of nonlinear mixed-effects mixture models for longitudinal data with heterogeneity and skewness
    Lu, Xiaosun
    Huang, Yangxin
    STATISTICS IN MEDICINE, 2014, 33 (16) : 2830 - 2849
  • [23] A semiparametric Bayesian approach to binomial distribution logistic mixed-effects models for longitudinal data
    Zhao, Yuanying
    Xu, Dengke
    Duan, Xingde
    Du, Jiang
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (07) : 1438 - 1456
  • [24] Partially linear mixed-effects joint models for skewed and missing longitudinal competing risks outcomes
    Lu, Tao
    Lu, Minggen
    Wang, Min
    Zhang, Jun
    Dong, Guang-Hui
    Xu, Yong
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2019, 29 (06) : 971 - 989
  • [25] Partially Collapsed Gibbs Sampling for Linear Mixed-effects Models
    Park, Taeyoung
    Min, Seunghyun
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (01) : 165 - 180
  • [26] Bayesian composite quantile regression for linear mixed-effects models
    Tian, Yuzhu
    Lian, Heng
    Tian, Maozai
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (15) : 7717 - 7731
  • [27] Linear Mixed-Effects Models for Dependent Data: Power and Accuracy in Parameter Estimation
    Liu, Yue
    Hau, Kit-Tai
    Liu, Hongyun
    MULTIVARIATE BEHAVIORAL RESEARCH, 2024, 59 (05) : 978 - 994
  • [28] Mixed-Effects Models for Conditional Quantiles with Longitudinal Data
    Liu, Yuan
    Bottai, Matteo
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2009, 5 (01):
  • [29] Simplex Mixed-Effects Models for Longitudinal Proportional Data
    Qiu, Zhenguo
    Song, Peter X. -K.
    Tan, Ming
    SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (04) : 577 - 596
  • [30] Local polynomial mixed-effects models for longitudinal data
    Wu, HL
    Zhang, JT
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (459) : 883 - 897