A semiparametric Bayesian approach to binomial distribution logistic mixed-effects models for longitudinal data

被引:3
|
作者
Zhao, Yuanying [1 ]
Xu, Dengke [2 ]
Duan, Xingde [3 ]
Du, Jiang [4 ]
机构
[1] Guiyang Univ, Coll Math & Informat Sci, Guiyang 550005, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Econ, Hangzhou, Peoples R China
[3] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang, Peoples R China
[4] Beijing Univ Technol, Coll Stat & Data Sci, Fac Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Longitudinal binomial data; Dirichlet process; Gibbs sampler; model comparison; Polya-Gamma mixture; SAMPLING METHODS; MONTE-CARLO; DIRICHLET;
D O I
10.1080/00949655.2021.1998500
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Logistic mixed-effects models are widely used to study the relationship between the binary response and covariates for longitudinal data analysis, where the random effects are typically assumed to have a fully parametric distribution. As this assumption is likely limited or unreasonable in a multitude of practical researches, a semiparametric Bayesian approach for relaxing it is developed in this paper. In the context of binomial distribution logistic mixed-effects models, a general Bayesian framework is presented in which a semiparametric hierarchical modelling with an approximate truncated Dirichlet process prior distribution is specified for the random effects. The stick-breaking prior and the blocked Gibbs sampler using Polya-Gamma mixture are employed to efficiently sample in the posterior analysis. Besides, a procedure calculating DIC for Bayesian model comparison is addressed. The methodology is demonstrated through simulation studies and a real example.
引用
收藏
页码:1438 / 1456
页数:19
相关论文
共 50 条
  • [1] A Bayesian approach to functional mixed-effects modeling for longitudinal data with binomial outcomes
    Kliethermes, Stephanie
    Oleson, Jacob
    [J]. STATISTICS IN MEDICINE, 2014, 33 (18) : 3130 - 3146
  • [2] Bayesian semiparametric mixed-effects joint models for analysis of longitudinal-competing risks data with skew distribution
    Lu, Tao
    [J]. STATISTICS AND ITS INTERFACE, 2017, 10 (03) : 441 - 450
  • [3] Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data
    Ferede, Melkamu M.
    Dagne, Getachew A.
    Mwalili, Samuel M.
    Bilchut, Workagegnehu H.
    Engida, Habtamu A.
    Karanja, Simon M.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)
  • [4] Flexible Bayesian semiparametric mixed-effects model for skewed longitudinal data
    Melkamu M. Ferede
    Getachew A. Dagne
    Samuel M. Mwalili
    Workagegnehu H. Bilchut
    Habtamu A. Engida
    Simon M. Karanja
    [J]. BMC Medical Research Methodology, 24
  • [5] Bayesian Variable Selection and Estimation in Semiparametric Simplex Mixed-Effects Models with Longitudinal Proportional Data
    Tang, Anmin
    Duan, Xingde
    Zhao, Yuanying
    [J]. ENTROPY, 2022, 24 (10)
  • [6] A Bayesian mixture of semiparametric mixed-effects joint models for skewed-longitudinal and time-to-event data
    Chen, Jiaqing
    Huang, Yangxin
    [J]. STATISTICS IN MEDICINE, 2015, 34 (20) : 2820 - 2843
  • [7] A semiparametric mixed-effects model for censored longitudinal data
    Mattos, Thalita B.
    Matos, Larissa Avila
    Lachos, Victor H.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (12) : 2582 - 2603
  • [8] Bayesian quantile semiparametric mixed-effects double regression models
    Zhang, Duo
    Wu, Liucang
    Ye, Keying
    Wang, Min
    [J]. STATISTICAL THEORY AND RELATED FIELDS, 2021, 5 (04) : 303 - 315
  • [9] Bayesian analysis of semiparametric reproductive dispersion mixed-effects models
    Chen, Xue-Dong
    Tang, Nian-Sheng
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (09) : 2145 - 2158
  • [10] Bayesian analysis for semiparametric mixed-effects double regression models
    Xu, Dengke
    Zhang, Zhongzhan
    Wu, Liucang
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (01): : 279 - 296