Simplex Mixed-Effects Models for Longitudinal Proportional Data

被引:49
|
作者
Qiu, Zhenguo
Song, Peter X. -K. [1 ]
Tan, Ming [2 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
[2] Univ Maryland, Div Biostat, Greenebaum Canc Ctr, College Pk, MD 20742 USA
基金
加拿大自然科学与工程研究理事会;
关键词
bias correction; dispersion model; Laplace approximation; overdispersion; penalized quasi-likelihood; restricted maximum likelihood; robustness; simplex distribution;
D O I
10.1111/j.1467-9469.2008.00603.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Continuous proportional outcomes are collected from many practical studies, where responses are confined within the unit interval (0,1). Utilizing Barndorff-Nielsen and Jorgensen's simplex distribution, we propose a new type of generalized linear mixed-effects model for longitudinal proportional data, where the expected value of proportion is directly modelled through a logit function of fixed and random effects. We establish statistical inference along the lines of Breslow and Clayton's penalized quasi-likelihood (PQL) and restricted maximum likelihood (REML) in the proposed model. We derive the PQL/REML using the high-order multivariate Laplace approximation, which gives satisfactory estimation of the model parameters. The proposed model and inference are illustrated by simulation studies and a data example. The simulation studies conclude that the fourth order approximate PQL/REML performs satisfactorily. The data example shows that Aitchison's technique of the normal linear mixed model for logit-transformed proportional outcomes is not robust against outliers.
引用
收藏
页码:577 / 596
页数:20
相关论文
共 50 条
  • [1] Bayesian Variable Selection and Estimation in Semiparametric Simplex Mixed-Effects Models with Longitudinal Proportional Data
    Tang, Anmin
    Duan, Xingde
    Zhao, Yuanying
    [J]. ENTROPY, 2022, 24 (10)
  • [2] Robust transformation mixed-effects models for longitudinal continuous proportional data
    Zhang, Peng
    Qiu, Zhenguo
    Fu, Yuejiao
    Song, Peter X. -K.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (02): : 266 - 281
  • [3] Mixed-Effects Models for Conditional Quantiles with Longitudinal Data
    Liu, Yuan
    Bottai, Matteo
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2009, 5 (01):
  • [4] Local polynomial mixed-effects models for longitudinal data
    Wu, HL
    Zhang, JT
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (459) : 883 - 897
  • [5] Joint mixed-effects models for causal inference with longitudinal data
    Shardell, Michelle
    Ferrucci, Luigi
    [J]. STATISTICS IN MEDICINE, 2018, 37 (05) : 829 - 846
  • [6] Mixed-Effects Models with Crossed Random Effects for Multivariate Longitudinal Data
    Angel Martinez-Huertas, Jose
    Ferrer, Emilio
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2023, 30 (01) : 105 - 122
  • [7] On the Estimation of Nonlinear Mixed-Effects Models and Latent Curve Models for Longitudinal Data
    Blozis, Shelley A.
    Harring, Jeffrey R.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2016, 23 (06) : 904 - 920
  • [8] Comparison of proportional and differential odds models for mixed-effects analysis of categorical data
    Kjellsson, Maria C.
    Zingmark, Per-Henrik
    Jonsson, E. Niclas
    Karlsson, Mats O.
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2008, 35 (05) : 483 - 501
  • [9] Comparison of proportional and differential odds models for mixed-effects analysis of categorical data
    Maria C. Kjellsson
    Per-Henrik Zingmark
    E. Niclas Jonsson
    Mats O. Karlsson
    [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2008, 35
  • [10] Mixed-effects models for joint modeling of sequence data in longitudinal studies
    Yan Yan Wu
    Laurent Briollais
    [J]. BMC Proceedings, 8 (Suppl 1)