Bayesian composite quantile regression for linear mixed-effects models

被引:11
|
作者
Tian, Yuzhu [1 ]
Lian, Heng [2 ]
Tian, Maozai [3 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Box 67,Kaiyuan Rd, Luoyang City 471023, Henan Province, Peoples R China
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore, Singapore
[3] Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite quantile regression (CQR); mixed-effects models; MCMC algorithm; The PCALD; IMMUNOLOGICAL RESPONSES; ANTIRETROVIRAL THERAPY; EFFICIENT;
D O I
10.1080/03610926.2016.1161798
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Longitudinal data are commonly modeled with the normal mixed-effects models. Most modeling methods are based on traditional mean regression, which results in non robust estimation when suffering extreme values or outliers. Median regression is also not a best choice to estimation especially for non normal errors. Compared to conventional modeling methods, composite quantile regression can provide robust estimation results even for non normal errors. In this paper, based on a so-called pseudo composite asymmetric Laplace distribution (PCALD), we develop a Bayesian treatment to composite quantile regression for mixed-effects models. Furthermore, with the location-scale mixture representation of the PCALD, we establish a Bayesian hierarchical model and achieve the posterior inference of all unknown parameters and latent variables using Markov Chain Monte Carlo (MCMC) method. Finally, this newly developed procedure is illustrated by some Monte Carlo simulations and a case analysis of HIV/AIDS clinical data set.
引用
收藏
页码:7717 / 7731
页数:15
相关论文
共 50 条
  • [1] Bayesian quantile semiparametric mixed-effects double regression models
    Zhang, Duo
    Wu, Liucang
    Ye, Keying
    Wang, Min
    STATISTICAL THEORY AND RELATED FIELDS, 2021, 5 (04) : 303 - 315
  • [2] Bayesian quantile regression-based partially linear mixed-effects joint models for longitudinal data with multiple features
    Zhang, Hanze
    Huang, Yangxin
    Wang, Wei
    Chen, Henian
    Langland-Orban, Barbara
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (02) : 569 - 588
  • [3] Variational Bayesian EM Algorithm for Quantile Regression in Linear Mixed Effects Models
    Wang, Weixian
    Tian, Maozai
    MATHEMATICS, 2024, 12 (21)
  • [4] Distributed Bayesian Inference in Linear Mixed-Effects Models
    Srivastava, SanveshB
    Xu, Yixiang
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (03) : 594 - 611
  • [5] Quantile regression for censored mixed-effects models with applications to HIV studies
    Lachos, Victor H.
    Chen, Ming-Hui
    Abanto-Valle, Carlos A.
    Azevedo, Cai L. N.
    STATISTICS AND ITS INTERFACE, 2015, 8 (02) : 203 - 215
  • [6] Estimating functional linear mixed-effects regression models
    Liu, Baisen
    Wang, Liangliang
    Cao, Jiguo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 106 : 153 - 164
  • [7] Bayesian analysis for semiparametric mixed-effects double regression models
    Xu, Dengke
    Zhang, Zhongzhan
    Wu, Liucang
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (01): : 279 - 296
  • [8] Bayesian quantile regression for skew-normal linear mixed models
    Aghamohammadi, A.
    Meshkani, M. R.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (22) : 10953 - 10972
  • [9] Bayesian quantile regression for parametric nonlinear mixed effects models
    Wang, Jing
    STATISTICAL METHODS AND APPLICATIONS, 2012, 21 (03): : 279 - 295
  • [10] Bayesian quantile regression for parametric nonlinear mixed effects models
    Jing Wang
    Statistical Methods & Applications, 2012, 21 : 279 - 295