Bayesian composite quantile regression for linear mixed-effects models

被引:11
|
作者
Tian, Yuzhu [1 ]
Lian, Heng [2 ]
Tian, Maozai [3 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Box 67,Kaiyuan Rd, Luoyang City 471023, Henan Province, Peoples R China
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore, Singapore
[3] Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite quantile regression (CQR); mixed-effects models; MCMC algorithm; The PCALD; IMMUNOLOGICAL RESPONSES; ANTIRETROVIRAL THERAPY; EFFICIENT;
D O I
10.1080/03610926.2016.1161798
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Longitudinal data are commonly modeled with the normal mixed-effects models. Most modeling methods are based on traditional mean regression, which results in non robust estimation when suffering extreme values or outliers. Median regression is also not a best choice to estimation especially for non normal errors. Compared to conventional modeling methods, composite quantile regression can provide robust estimation results even for non normal errors. In this paper, based on a so-called pseudo composite asymmetric Laplace distribution (PCALD), we develop a Bayesian treatment to composite quantile regression for mixed-effects models. Furthermore, with the location-scale mixture representation of the PCALD, we establish a Bayesian hierarchical model and achieve the posterior inference of all unknown parameters and latent variables using Markov Chain Monte Carlo (MCMC) method. Finally, this newly developed procedure is illustrated by some Monte Carlo simulations and a case analysis of HIV/AIDS clinical data set.
引用
收藏
页码:7717 / 7731
页数:15
相关论文
共 50 条
  • [31] Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile Regression
    Geraci, Marco
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 57 (13): : 1 - 29
  • [32] Using Linear Mixed-Effects Models with Quantile Regression to Simulate the Crown Profile of Planted Pinus sylvestris var. Mongolica Trees
    Sun, Yunxia
    Gao, Huilin
    Li, Fengri
    FORESTS, 2017, 8 (11):
  • [33] Influence analysis for linear mixed-effects models
    Demidenko, E
    Stukel, TA
    STATISTICS IN MEDICINE, 2005, 24 (06) : 893 - 909
  • [34] Bayesian truncated beta nonlinear mixed-effects models
    Mota Paraiba, Carolina Costa
    Bochkina, Natalia
    Ribeiro Diniz, Carlos Alberto
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (02) : 320 - 346
  • [35] Fiducial Inference in Linear Mixed-Effects Models
    Yang, Jie
    Li, Xinmin
    Gao, Hongwei
    Zou, Chenchen
    ENTROPY, 2025, 27 (02)
  • [36] Bayesian wavelet shrinkage for nonparametric mixed-effects models
    Huang, SY
    Lu, HHS
    STATISTICA SINICA, 2000, 10 (04) : 1021 - 1040
  • [37] Linear Mixed-Effects Models in chemistry: A tutorial
    Carnoli, Andrea Junior
    Lohuis, Petra oude
    Buydens, Lutgarde M. C.
    Tinnevelt, Gerjen H.
    Jansen, Jeroen J.
    ANALYTICA CHIMICA ACTA, 2024, 1304
  • [38] Linear Mixed-Effects Models in Medical Research
    Schober, Patrick
    Vetter, Thomas R.
    ANESTHESIA AND ANALGESIA, 2021, 132 (06): : 1592 - 1593
  • [39] Bayesian composite Tobit quantile regression
    Alhusseini, Fadel Hamid Hadi
    Georgescu, Vasile
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (04) : 727 - 739
  • [40] Bayesian Analysis of Composite Quantile Regression
    Alhamzawi R.
    Statistics in Biosciences, 2016, 8 (2) : 358 - 373