Bayesian composite quantile regression for linear mixed-effects models

被引:11
|
作者
Tian, Yuzhu [1 ]
Lian, Heng [2 ]
Tian, Maozai [3 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Box 67,Kaiyuan Rd, Luoyang City 471023, Henan Province, Peoples R China
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore, Singapore
[3] Renmin Univ China, Ctr Appl Stat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite quantile regression (CQR); mixed-effects models; MCMC algorithm; The PCALD; IMMUNOLOGICAL RESPONSES; ANTIRETROVIRAL THERAPY; EFFICIENT;
D O I
10.1080/03610926.2016.1161798
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Longitudinal data are commonly modeled with the normal mixed-effects models. Most modeling methods are based on traditional mean regression, which results in non robust estimation when suffering extreme values or outliers. Median regression is also not a best choice to estimation especially for non normal errors. Compared to conventional modeling methods, composite quantile regression can provide robust estimation results even for non normal errors. In this paper, based on a so-called pseudo composite asymmetric Laplace distribution (PCALD), we develop a Bayesian treatment to composite quantile regression for mixed-effects models. Furthermore, with the location-scale mixture representation of the PCALD, we establish a Bayesian hierarchical model and achieve the posterior inference of all unknown parameters and latent variables using Markov Chain Monte Carlo (MCMC) method. Finally, this newly developed procedure is illustrated by some Monte Carlo simulations and a case analysis of HIV/AIDS clinical data set.
引用
收藏
页码:7717 / 7731
页数:15
相关论文
共 50 条
  • [41] Modeling normative kinetic perimetry isopters using mixed-effects quantile regression
    Patel, Dipesh E.
    Geraci, Marco
    Cortina-Borja, Mario
    JOURNAL OF VISION, 2016, 16 (06):
  • [42] Perils and pitfalls of mixed-effects regression models in biology
    Silk, Matthew J.
    Harrison, Xavier A.
    Hodgson, David J.
    PEERJ, 2020, 8
  • [43] Weighted composite quantile regression for longitudinal mixed effects models with application to AIDS studies
    Tian, Yuzhu
    Wang, Liyong
    Tang, Manlai
    Tian, Maozai
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (06) : 1837 - 1853
  • [44] Composite quantile regression for linear errors-in-variables models
    Jiang, Rong
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (03): : 707 - 713
  • [45] Bayesian Multiple Quantile Regression for Linear Models Using a Score Likelihood
    Wu, Teng
    Narisetty, Naveen N.
    BAYESIAN ANALYSIS, 2021, 16 (03): : 875 - 903
  • [46] Bayesian LASSO-Regularized quantile regression for linear regression models with autoregressive errors
    Tian, Yuzhu
    Shen, Silian
    Lu, Ge
    Tang, Manlai
    Tian, Maozai
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (03) : 777 - 796
  • [47] Bayesian Quantile Regression for Ordinal Models
    Rahman, Mohammad Arshad
    BAYESIAN ANALYSIS, 2016, 11 (01): : 1 - 24
  • [48] Bayesian inference on partially linear mixed-effects joint models for longitudinal data with multiple features
    Huang, Yangxin
    Lu, Tao
    COMPUTATIONAL STATISTICS, 2017, 32 (01) : 179 - 196
  • [49] Bayesian inference on partially linear mixed-effects joint models for longitudinal data with multiple features
    Yangxin Huang
    Tao Lu
    Computational Statistics, 2017, 32 : 179 - 196
  • [50] Bayesian estimation and influence diagnostics of generalized partially linear mixed-effects models for longitudinal data
    Duan, Xing-De
    Tang, Nian-Sheng
    STATISTICS, 2016, 50 (03) : 525 - 539